期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling 被引量:2
1
作者 Xin Liu Si-Wei Meng +3 位作者 Zheng-Zhao Liang Chun'an Tang Jia-Ping Tao Ji-Zhou Tang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1488-1512,共25页
Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas re... Reliable prediction of the shale fracturing process is a challenging problem in exploiting deep shale oil and gas resources.Complex fracture networks need to be artificially created to employ deep shale oil and gas reserves.Randomly distributed minerals and heterogeneities in shales significantly affect mechanical properties and fracturing behaviors in oil and gas exploitation.Describing the actual microstructure and associated heterogeneities in shales constitutes a significant challenge.The RFPA3D(rock failure process analysis parallel computing program)-based modeling approach is a promising numerical technique due to its unique capability to simulate the fracturing behavior of rocks.To improve traditional numerical technology and study crack propagation in shale on the microscopic scale,a combination of high-precision internal structure detection technology with the RFPA^(3D) numerical simulation method was developed to construct a real mineral structure-based modeling method.First,an improved digital image processing technique was developed to incorporate actual shale microstructures(focused ion beam scanning electron microscopy was used to capture shale microstructure images that reflect the distri-butions of different minerals)into the numerical model.Second,the effect of mineral inhomogeneity was considered by integrating the mineral statistical model obtained from the mineral nanoindentation experiments into the numerical model.By simulating a shale numerical model in which pyrite particles are wrapped by organic matter,the effects of shale microstructure and applied stress state on microcrack behavior and mechanical properties were investigated and analyzed.In this study,the effect of pyrite particles on fracture propagation was systematically analyzed and summarized for the first time.The results indicate that the distribution of minerals and initial defects dominated the fracture evolution and the failure mode.Cracks are generally initiated and propagated along the boundaries of hard mineral particles such as pyrite or in soft minerals such as organic matter.Locations with collections of hard minerals are more likely to produce complex fractures.This study provides a valuable method for un-derstanding the microfracture behavior of shales. 展开更多
关键词 FIB-SEM digital imageprocessing Realistic microstructure 3D digital shale fracture process simulation PYRITE
下载PDF
THE APPLICATION OF FOURIER TRANSFORM IN REGULARIZED SPECKLE PHOTOGRAPHY
2
作者 Zhang Yuanpeng Zhu Huaning Zhou Wenling 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第1期75-80,共6页
Two speckle patterns are recorded using a video cameracorresponding to undisplaced and displaced states into the memory ofa computer. After one pattern is added to another, the displacementof the measured points can b... Two speckle patterns are recorded using a video cameracorresponding to undisplaced and displaced states into the memory ofa computer. After one pattern is added to another, the displacementof the measured points can be calculated by using the Fouriertransform. The expression of displacement field is deduced fornon-uniform displacement, and as an example, a rotatanle disc istested for illustration. The re- sults prove that the present methodis promising. 展开更多
关键词 speckle photography electronic speckle photography DFT digital imageprocessing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部