Purpose The digital controller for the accelerator magnet power supply typically employs a field-programmable gate array(FPGA)as the signal processing chip for executing digital processing of closed-loop control.Curre...Purpose The digital controller for the accelerator magnet power supply typically employs a field-programmable gate array(FPGA)as the signal processing chip for executing digital processing of closed-loop control.Currently,FPGA chips are predominantly utilized in Intel or Xilinx products.To address the“key areas and stranglehold”issue pertaining to FPGA chips in accelerator power supply,we have devised a digital power supply prototype using a domestic FPGA chip and validated its feasibility in the upgrade project’s magnet power supply digital transformation plan for the Beijing Electron Positron Collider(BEPCII).Method A domestic FPGA chip from the Seal5000 SA5Z-30-D1 series by Xi’an ZhiDuoJing Microelectronics Co.serves as the core component for the design of a digital corrector magnet power supply to replace the existing analog controlled corrector power supply at BEPCII.The power supply’s digital control of the closed loop is achieved through the use of a hardware description language,and the digital controller hardware is constructed based on the original power supply power topology.Results and conclusions After conducting experiments and tests on the power supply prototype,we have successfully met the current operational requirements of the BEPCII corrector power supply,thus confirming the feasibility of utilizing domestic FPGA for digital application on accelerator power supply.展开更多
Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM...Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM principles are discussed. The primary and secondary current characteristics are analyzed when the transformer is in both normal and magnetic bias conditions. Second, two digitalization methods are put forward after the research on PWM adjustment principles, which are based on the primary current feedback. Though the two methods could restrain magnetic bias, their realization is difficult. A new method is researched on double close-loops to overcome the above shortcomings, which uses the secondary current as the feedback signal and the primary current as the protection signal. Finally, the secondary current control made is discussed and realized. Welding experimental results show that the method has strong flexibility and adaptability, which can be used to realize the full digital welding power supply.展开更多
基金National Natural Science Foundation of China(12005236).
文摘Purpose The digital controller for the accelerator magnet power supply typically employs a field-programmable gate array(FPGA)as the signal processing chip for executing digital processing of closed-loop control.Currently,FPGA chips are predominantly utilized in Intel or Xilinx products.To address the“key areas and stranglehold”issue pertaining to FPGA chips in accelerator power supply,we have devised a digital power supply prototype using a domestic FPGA chip and validated its feasibility in the upgrade project’s magnet power supply digital transformation plan for the Beijing Electron Positron Collider(BEPCII).Method A domestic FPGA chip from the Seal5000 SA5Z-30-D1 series by Xi’an ZhiDuoJing Microelectronics Co.serves as the core component for the design of a digital corrector magnet power supply to replace the existing analog controlled corrector power supply at BEPCII.The power supply’s digital control of the closed loop is achieved through the use of a hardware description language,and the digital controller hardware is constructed based on the original power supply power topology.Results and conclusions After conducting experiments and tests on the power supply prototype,we have successfully met the current operational requirements of the BEPCII corrector power supply,thus confirming the feasibility of utilizing domestic FPGA for digital application on accelerator power supply.
文摘Pulse width modulation ( PWM) drive control digitalization is the key for the full digital invert power supply. New ideas are proposed, which are based on field programmable gate array ( FPGA ). First, digital PWM principles are discussed. The primary and secondary current characteristics are analyzed when the transformer is in both normal and magnetic bias conditions. Second, two digitalization methods are put forward after the research on PWM adjustment principles, which are based on the primary current feedback. Though the two methods could restrain magnetic bias, their realization is difficult. A new method is researched on double close-loops to overcome the above shortcomings, which uses the secondary current as the feedback signal and the primary current as the protection signal. Finally, the secondary current control made is discussed and realized. Welding experimental results show that the method has strong flexibility and adaptability, which can be used to realize the full digital welding power supply.