An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,wit...An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,with the steadily decreasing cost of ICs,the feasibility of digitally controlled DC/DC switching converters has increased sig-nificantly.This paper outlines a sample of digital solutions for DC/DC switching converters to enhance the performance of DC/DC switching converters.Furthermore,latest research activities pertaining to applications for steady-state and dy-namic performance improvement,such as efficiency optimization,controller auto tuning,and capacitor charge balance control,is discussed.These applications demonstrate the significant advantages and potentials of digital control.展开更多
In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonabl...In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.展开更多
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co...Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.展开更多
This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition an...This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition and technology of simulation system and its equipments; and systematic description and exploration in relation to the developing trend of system simulation science and simulation system technology.展开更多
目前主流工业机器人为封闭式控制结构,存在不开源、二次开发难的问题,因此设计一种基于TwinCAT3(the windows control and automation technology)的跨平台、可移植性好的机器人控制系统架构。该架构包含视觉、运动控制和算法集成与仿...目前主流工业机器人为封闭式控制结构,存在不开源、二次开发难的问题,因此设计一种基于TwinCAT3(the windows control and automation technology)的跨平台、可移植性好的机器人控制系统架构。该架构包含视觉、运动控制和算法集成与仿真控制模块,采用倍福自动化设备规范(automation device specification,ADS)通信技术和实时工业以太网总线技术(ethernet for control automation technology,EtherCAT),建立以计算机(personal computer,PC)和倍福控制器为EtherCAT主站,控制多组从站执行器的一主多从工作模式。该模式结合离线与在线控制、集成数字孪生技术,完成虚拟样机与物理样机的联动;采用开源可扩展架构,便于视觉算法、智能算法等算法集成。经实验验证,此架构具有拓展性好、实时性强的特点。展开更多
文摘An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,with the steadily decreasing cost of ICs,the feasibility of digitally controlled DC/DC switching converters has increased sig-nificantly.This paper outlines a sample of digital solutions for DC/DC switching converters to enhance the performance of DC/DC switching converters.Furthermore,latest research activities pertaining to applications for steady-state and dy-namic performance improvement,such as efficiency optimization,controller auto tuning,and capacitor charge balance control,is discussed.These applications demonstrate the significant advantages and potentials of digital control.
基金Supported by National Natural Science Foundation of China(Grant Nos.52005441,51890885)open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201906)+1 种基金Zhejiang Province Natural Science Foundation of China(Grant No.LQ21E050017)China Postdoctoral Science Foundation(Grant Nos.2021M692777,2021T140594).
文摘In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries.
基金Supported by the National Natural Science Foundation of China(No.51505412)the Independent Study Program for Young Teachers in Yanshan University(No.14LGB004)
文摘Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system.
文摘This paper mainly discusses the following problems: the important meaning and special function of simulation system; the definition, contents and relationship of system and system simulation science; the definition and technology of simulation system and its equipments; and systematic description and exploration in relation to the developing trend of system simulation science and simulation system technology.
文摘目前主流工业机器人为封闭式控制结构,存在不开源、二次开发难的问题,因此设计一种基于TwinCAT3(the windows control and automation technology)的跨平台、可移植性好的机器人控制系统架构。该架构包含视觉、运动控制和算法集成与仿真控制模块,采用倍福自动化设备规范(automation device specification,ADS)通信技术和实时工业以太网总线技术(ethernet for control automation technology,EtherCAT),建立以计算机(personal computer,PC)和倍福控制器为EtherCAT主站,控制多组从站执行器的一主多从工作模式。该模式结合离线与在线控制、集成数字孪生技术,完成虚拟样机与物理样机的联动;采用开源可扩展架构,便于视觉算法、智能算法等算法集成。经实验验证,此架构具有拓展性好、实时性强的特点。