Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode ...Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization.These problems can be tackled through the optimization of the electrolyte.However,the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive.Herein,a fast and simple method based on the digital holography is developed.It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer.It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth,thus able to value the applicability of electrolyte additives.The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive.Based on systematic characterization,it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition,but also construct adsorption molecule layers to inhibit side reactions of Zn anode.Being easy to operate,capable of in situ observation,and able to endure harsh conditions,digital holography method will be a promising approach for the interfacial investigation of other battery systems.展开更多
We present herein an introduction to the Beijing network of digital geomagnetic pulsation observatories, and describe its essential features, and important roles in earthquake prediction studies and other geomagnetic ...We present herein an introduction to the Beijing network of digital geomagnetic pulsation observatories, and describe its essential features, and important roles in earthquake prediction studies and other geomagnetic investigations. The network provides digitalized data of geomagnetic events, such as magnetic storms, magnetic disturbances, geomagnetic daily variations, and geomagnetic pulsations. The digitalized data, convenient for processing and analysis, contain very rich information because of high accuracy and wide dynamic range of the instruments.展开更多
Digital Ocean Information Framework (DOIF) has been proposed by China in 2011 based on the achievements of the comprehensive offshore oceanic surveys supported by Chinese Offshore Investigation and Assessment Progra...Digital Ocean Information Framework (DOIF) has been proposed by China in 2011 based on the achievements of the comprehensive offshore oceanic surveys supported by Chinese Offshore Investigation and Assessment Program, whose code name is 908. All observations from the surveys have been integrated and managed by DOIF. DOIF is capable of supporting the decision of making process for the sustainable use of marine resources in coastal regions of China, providing useful information and added value products as well as services for the improved management of the coastal areas in China with high business impact on the targeted groups as public authorities and commercial operators (e.g. managers, fishermen, shipping companies). The future vision of DOIF in the international marine data and information exchange and service at Western Pacific region is presented in this paper.展开更多
The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomi...The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomicrographs showing the characteristics of the sub-crack development were taken using a scanning electron microscope (SEM). From these photomicrographs, the real-time images showing the initiation, growth and coalescence of sub-cracks and micro-cracks in the sandstone specimens were obtained and the effects of loading level as well as grain boundaries on the development of cracks were analyzed. Second, the intensity images of the sandstone specimen surface were captured from the observations of the SEM corresponding to different loading levels. Then correlation computation was carried out for the sequential pairs of intensity images to evaluate the displacement components, as well as the strain field. The results show that the deformation varies in different areas separated by sub-cracks during rock damage processes.展开更多
A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the im...A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the immerged Long-big tunnel in Jinping Cascade II Hydropower Station under uniaxial compression was recorded by using the testing scheme. According to the stereology theory, the propagation and coalescent of cracks at meso-scale were quantitatively investigated with digital technology. Therefore, the basic geometric information of rock microcracks such as area, angle, length, width, perimeter, was obtained from binary images after segmentation. The failure mechanism of specimen under uniaxial compression with the quantitative information was studied from macro and microscopic point of view. The results show that the image of microfracturing process of the specimen can be observed and recorded digitally. During the damage of the specimen, the distribution of microcracks in the specimen is still subjected to exponential distribution with some microcracks concentrated in certain regions. Finally, the change law of the fractal dimension of the local element in marble sample under different external load conditions is obtained by means of the statistical calculation of the fractal dimension.展开更多
China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viab...China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viable Earth observation platform to provide high-quality,planetary-scale data.The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon.China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information.Programs such as the Big Earth Data Science Engineering Program(CASEarth)provide opportunities to integrate data and develop“Big Earth Data”platforms to add value to data through analysis and integration.Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development.With the rapid digital transformation of societies,and consequently increasing demand for big data and associated products,Digital Earth and the Digital Belt and Road Program(DBAR)allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.展开更多
Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit th...Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit the rise of global temperatures. The United Nations(UN) has set Sustainable Development Goals(SDGs) to transform our world in terms of closely linking human well-being, economic prosperity, and healthy environments. Sustainable development requires the support of spatial information and objective evaluation,and the capability of macroscopic, rapid, accurate Earth observation techniques plays an important role in sustainable development. Recently, Earth observation technologies are developing rapidly in China, where scientists are building coordinated, comprehensive and sustainable Earth observation systems for global monitoring programs. Recent efforts include the Digital Belt and Road Program(DBAR) and comparative studies of the "three poles". This and other researches will provide powerful support for solving problems such as global change and environmental degradation.展开更多
Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discriminati...Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.展开更多
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adop...An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.展开更多
The technological landscape for managing big Earth observation(EO)data ranges from global solutions on large cloud infrastructures with web-based access to self-hosted implementations.EO data cubes are a leading techn...The technological landscape for managing big Earth observation(EO)data ranges from global solutions on large cloud infrastructures with web-based access to self-hosted implementations.EO data cubes are a leading technology for facilitating big EO data analysis and can be deployed on different spatial scales:local,national,regional,or global.Several EO data cubes with a geographic focus(“local EO data cubes”)have been implemented.However,their alignment with the Digital Earth(DE)vision and the benefits and trade-offs in creating and maintaining them ought to be further examined.We investigate local EO data cubes from five perspectives(science,business and industry,government and policy,education,communities and citizens)and illustrate four examples covering three continents at different geographic scales(Swiss Data Cube,semantic EO data cube for Austria,DE Africa,Virginia Data Cube).A local EO data cube can benefit many stakeholders and players but requires several technical developments.These developments include enabling local EO data cubes based on public,global,and cloud-native EO data streaming and interoperability between local EO data cubes.We argue that blurring the dichotomy between global and local aligns with the DE vision to access the world’s knowledge and explore information about the planet.展开更多
Digital Earth is an interdisciplinary field involving space technology,information technology,and geoscience.This article introduces the land observation satellite system of China and discusses the requirements for sa...Digital Earth is an interdisciplinary field involving space technology,information technology,and geoscience.This article introduces the land observation satellite system of China and discusses the requirements for satellite payloads in terms of spatial,temporal,and spectral resolution to establish a Digital Earth.The applications of land satellites under the framework of Digital Earth are introduced from the perspectives of data support,special subject services,and integrated information services.It is concluded that China’s land observation satellites and ground processing systems will be fundamental components of the Digital Earth system,in which satellite data and their derived information will serve as the principal information source and greatly promote applications of Digital Earth.展开更多
Digital maps of soil properties are now widely available.End-users now can access several digital soil mapping(DSM)products of soil properties,produced using different models,calibration/training data,and covariates a...Digital maps of soil properties are now widely available.End-users now can access several digital soil mapping(DSM)products of soil properties,produced using different models,calibration/training data,and covariates at various spatial scales from global to local.Therefore,there is an urgent need to provide easy-to-understand tools to communicate map uncertainty and help end-users assess the reliability of DSM products for use at local scales.In this study,we used a large amount of hand-feel soil texture(HFST)data to assess the performance of various published DSM products on the prediction of soil particle size distribution in Central France.We tested four DSM products for soil texture prediction developed at various scales(global,continental,national,and regional)by comparing their predictions with approximately 3200 HFST observations realized on a 1:50000 soil survey conducted after release of these DSM products.We used both visual comparisons and quantitative indicators to match the DSM predictions and HFST observations.The comparison between the low-cost HFST observations and DSM predictions clearly showed the applicability of various DSM products,with the prediction accuracy increasing from global to regional predictions.This simple evaluation can determine which products can be used at the local scale and if more accurate DSM products are required.展开更多
基金supported by the National Natural Science Foundation of China(No.22075115)Natural Science Foundation of Jiangsu Province(No.BK20211352)+2 种基金Joint Funds of the National Natural Science Foundation of China(No.U2141201)Natural Science Foundation(No.22KJA430005)of Jiangsu Education Committee of ChinaPostgraduate Research and Practice Innovation Program of Jiangsu Normal University(No.2021XKT0296).
文摘Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost,high-safety,and high theoretical capacity.However,dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization.These problems can be tackled through the optimization of the electrolyte.However,the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive.Herein,a fast and simple method based on the digital holography is developed.It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer.It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth,thus able to value the applicability of electrolyte additives.The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive.Based on systematic characterization,it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition,but also construct adsorption molecule layers to inhibit side reactions of Zn anode.Being easy to operate,capable of in situ observation,and able to endure harsh conditions,digital holography method will be a promising approach for the interfacial investigation of other battery systems.
文摘We present herein an introduction to the Beijing network of digital geomagnetic pulsation observatories, and describe its essential features, and important roles in earthquake prediction studies and other geomagnetic investigations. The network provides digitalized data of geomagnetic events, such as magnetic storms, magnetic disturbances, geomagnetic daily variations, and geomagnetic pulsations. The digitalized data, convenient for processing and analysis, contain very rich information because of high accuracy and wide dynamic range of the instruments.
文摘Digital Ocean Information Framework (DOIF) has been proposed by China in 2011 based on the achievements of the comprehensive offshore oceanic surveys supported by Chinese Offshore Investigation and Assessment Program, whose code name is 908. All observations from the surveys have been integrated and managed by DOIF. DOIF is capable of supporting the decision of making process for the sustainable use of marine resources in coastal regions of China, providing useful information and added value products as well as services for the improved management of the coastal areas in China with high business impact on the targeted groups as public authorities and commercial operators (e.g. managers, fishermen, shipping companies). The future vision of DOIF in the international marine data and information exchange and service at Western Pacific region is presented in this paper.
基金supported by the NaturalScience Foundation of China(contract no.40821062)
文摘The deformation field around sub-cracks was calculated using the digital speckle correlation method. First, the uni-axial compression tests on sandstone samples containing a pre- fabricated fracture were made. Photomicrographs showing the characteristics of the sub-crack development were taken using a scanning electron microscope (SEM). From these photomicrographs, the real-time images showing the initiation, growth and coalescence of sub-cracks and micro-cracks in the sandstone specimens were obtained and the effects of loading level as well as grain boundaries on the development of cracks were analyzed. Second, the intensity images of the sandstone specimen surface were captured from the observations of the SEM corresponding to different loading levels. Then correlation computation was carried out for the sequential pairs of intensity images to evaluate the displacement components, as well as the strain field. The results show that the deformation varies in different areas separated by sub-cracks during rock damage processes.
基金Projects(50674040, 50539090) supported by the National Natural Science Foundation of ChinaProject(CX07B_128z) supported by the Cultivate Creative Postgraduate Foundation of Jiangsu Province, China
文摘A new meso-mechanical testing scheme based on SEM was developed to carry out the experiment of microfracturing process of rocks. The microfracturing process of the pre-crack marble sample on surrounding rock in the immerged Long-big tunnel in Jinping Cascade II Hydropower Station under uniaxial compression was recorded by using the testing scheme. According to the stereology theory, the propagation and coalescent of cracks at meso-scale were quantitatively investigated with digital technology. Therefore, the basic geometric information of rock microcracks such as area, angle, length, width, perimeter, was obtained from binary images after segmentation. The failure mechanism of specimen under uniaxial compression with the quantitative information was studied from macro and microscopic point of view. The results show that the image of microfracturing process of the specimen can be observed and recorded digitally. During the damage of the specimen, the distribution of microcracks in the specimen is still subjected to exponential distribution with some microcracks concentrated in certain regions. Finally, the change law of the fractal dimension of the local element in marble sample under different external load conditions is obtained by means of the statistical calculation of the fractal dimension.
基金Supported by the Chinese Academy of Sciences Strategic Priority Research Program of the Big Earth Data Science Engineering Program(XDA19090000,XDA19030000)。
文摘China is expanding and sharing its capacity for Earth observation by developing sensors,platforms,and launch capabilities in tandem with growing lunar and deep space exploration.China is considering the Moon as a viable Earth observation platform to provide high-quality,planetary-scale data.The platform would produce consistent spatiotemporal data because of its long operational life and the geological stability of the Moon.China is also quickly improving its capabilities in processing and transforming Earth observation data into useful and practical information.Programs such as the Big Earth Data Science Engineering Program(CASEarth)provide opportunities to integrate data and develop“Big Earth Data”platforms to add value to data through analysis and integration.Such programs can offer products and services independently and in collaboration with international partners for data-driven decision support and policy development.With the rapid digital transformation of societies,and consequently increasing demand for big data and associated products,Digital Earth and the Digital Belt and Road Program(DBAR)allow Chinese experts to collaborate with international partners to integrate valuable Earth observation data in regional and global sustainable development.
文摘Sustainability is the current theme of global development, and for China, it is not only an opportunity but also a challenge. In 2016, the Paris Agreement on climate change was adopted, addressing the need to limit the rise of global temperatures. The United Nations(UN) has set Sustainable Development Goals(SDGs) to transform our world in terms of closely linking human well-being, economic prosperity, and healthy environments. Sustainable development requires the support of spatial information and objective evaluation,and the capability of macroscopic, rapid, accurate Earth observation techniques plays an important role in sustainable development. Recently, Earth observation technologies are developing rapidly in China, where scientists are building coordinated, comprehensive and sustainable Earth observation systems for global monitoring programs. Recent efforts include the Digital Belt and Road Program(DBAR) and comparative studies of the "three poles". This and other researches will provide powerful support for solving problems such as global change and environmental degradation.
基金Natural Science Foundation of Shandong Province (Y2000E08) the bargain item of China Earthquake Administration in the year 2002.
文摘Wavelet transform method is applied to measure time-frequency distribution characteristics of digital deformation data and noise. Based on the characteristics of primary modulus and stochastic white noise discrimination factor of wavelet decomposition, we analyze the variation rule of normal background and noise data from Shandong digital deformation observation data. The research results indicate that: a) 1/4 daily wave, semi-diurnal tide wave, daily wave and half lunar wave and so on quasi-periodic signal exist in the detail decomposing signal of wavelet when scale are equal to 2, 3 and 4; b) The amplitude of detail decomposing signal is the biggest when scale is equal to 3; c) The detail decomposing signal contains mainly noise corresponding to scale 1 and 5, respectively; d) We may trace the abnormal precursory which is related to earthquake by analyzing non-earthquake wavelet decomposing signal whose scale is specified from digital deformation observation data.
文摘An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance.
基金the Austrian Research Promotion Agency(FFG)under the Austrian Space Application Programme(ASAP)within the projects Sen2Cube.at(project no.:866016)SemantiX(project no.:878939)SIMS(project no.:885365).
文摘The technological landscape for managing big Earth observation(EO)data ranges from global solutions on large cloud infrastructures with web-based access to self-hosted implementations.EO data cubes are a leading technology for facilitating big EO data analysis and can be deployed on different spatial scales:local,national,regional,or global.Several EO data cubes with a geographic focus(“local EO data cubes”)have been implemented.However,their alignment with the Digital Earth(DE)vision and the benefits and trade-offs in creating and maintaining them ought to be further examined.We investigate local EO data cubes from five perspectives(science,business and industry,government and policy,education,communities and citizens)and illustrate four examples covering three continents at different geographic scales(Swiss Data Cube,semantic EO data cube for Austria,DE Africa,Virginia Data Cube).A local EO data cube can benefit many stakeholders and players but requires several technical developments.These developments include enabling local EO data cubes based on public,global,and cloud-native EO data streaming and interoperability between local EO data cubes.We argue that blurring the dichotomy between global and local aligns with the DE vision to access the world’s knowledge and explore information about the planet.
文摘Digital Earth is an interdisciplinary field involving space technology,information technology,and geoscience.This article introduces the land observation satellite system of China and discusses the requirements for satellite payloads in terms of spatial,temporal,and spectral resolution to establish a Digital Earth.The applications of land satellites under the framework of Digital Earth are introduced from the perspectives of data support,special subject services,and integrated information services.It is concluded that China’s land observation satellites and ground processing systems will be fundamental components of the Digital Earth system,in which satellite data and their derived information will serve as the principal information source and greatly promote applications of Digital Earth.
文摘Digital maps of soil properties are now widely available.End-users now can access several digital soil mapping(DSM)products of soil properties,produced using different models,calibration/training data,and covariates at various spatial scales from global to local.Therefore,there is an urgent need to provide easy-to-understand tools to communicate map uncertainty and help end-users assess the reliability of DSM products for use at local scales.In this study,we used a large amount of hand-feel soil texture(HFST)data to assess the performance of various published DSM products on the prediction of soil particle size distribution in Central France.We tested four DSM products for soil texture prediction developed at various scales(global,continental,national,and regional)by comparing their predictions with approximately 3200 HFST observations realized on a 1:50000 soil survey conducted after release of these DSM products.We used both visual comparisons and quantitative indicators to match the DSM predictions and HFST observations.The comparison between the low-cost HFST observations and DSM predictions clearly showed the applicability of various DSM products,with the prediction accuracy increasing from global to regional predictions.This simple evaluation can determine which products can be used at the local scale and if more accurate DSM products are required.