The increasing penetration of inverter-based distributed generations(DGs)significantly affects the fault characteristics of distribution networks.Fault analysis is a keystone for suitable protection scheme design.This...The increasing penetration of inverter-based distributed generations(DGs)significantly affects the fault characteristics of distribution networks.Fault analysis is a keystone for suitable protection scheme design.This paper presents the modelling methodology for distribution networks with inverter-based DGs and performs fault simulation based on the model.Firstly,a single inverter-based DG model based on the cascaded control structure is developed.Secondly,a simulation model of distribution network with two inverter-based DGs is established.Then,different fault simulations are performed based on the Real Time Digital Simulator(RTDS).Theoretical analyses are conducted to justify the simulation results,including the equivalent circuit of distribution networks with inverter-based DGs and the solution method for loop currents.展开更多
The conventional power systems are evolving as smart grids.In recent times cyberattacks on smart grids have been increasing.Among different attacks,False Data Injection(FDI)is considered as an emerging threat that has...The conventional power systems are evolving as smart grids.In recent times cyberattacks on smart grids have been increasing.Among different attacks,False Data Injection(FDI)is considered as an emerging threat that has significant impact.By exploiting the vulnerabilities of IEC 61850 Generic Object-Oriented Substation Events(GOOSE)and Sam-pled Values(SV)attackers can launch different FDI attacks.In this paper,a real-time set up capable of simulating FDI on GOOSE and SV protocols is developed to evaluate the impact of such attacks on power grid.IEC 62351 stipulates cybersecurity guidelines for GOOSE and SV,but only at communication or Information Technology(IT)level.Hence there is a need to develop a holistic security both at IT and Operation Technology(OT)level.In this regard,a novel sequence content resolver-based hybrid security scheme suitable to tackle FDI attacks on GOOSE and SV is proposed.Furthermore,the computational performance of the proposed hybrid security scheme is presented to demonstrate its applicability to the time critical GOOSE and SV protocols.展开更多
基金Nation Natural Science Foundation of China(51377100)the Key Scientific and Technological Project of State Grid Shandong Power Company(SGSDWF00YJJS1400563).
文摘The increasing penetration of inverter-based distributed generations(DGs)significantly affects the fault characteristics of distribution networks.Fault analysis is a keystone for suitable protection scheme design.This paper presents the modelling methodology for distribution networks with inverter-based DGs and performs fault simulation based on the model.Firstly,a single inverter-based DG model based on the cascaded control structure is developed.Secondly,a simulation model of distribution network with two inverter-based DGs is established.Then,different fault simulations are performed based on the Real Time Digital Simulator(RTDS).Theoretical analyses are conducted to justify the simulation results,including the equivalent circuit of distribution networks with inverter-based DGs and the solution method for loop currents.
文摘The conventional power systems are evolving as smart grids.In recent times cyberattacks on smart grids have been increasing.Among different attacks,False Data Injection(FDI)is considered as an emerging threat that has significant impact.By exploiting the vulnerabilities of IEC 61850 Generic Object-Oriented Substation Events(GOOSE)and Sam-pled Values(SV)attackers can launch different FDI attacks.In this paper,a real-time set up capable of simulating FDI on GOOSE and SV protocols is developed to evaluate the impact of such attacks on power grid.IEC 62351 stipulates cybersecurity guidelines for GOOSE and SV,but only at communication or Information Technology(IT)level.Hence there is a need to develop a holistic security both at IT and Operation Technology(OT)level.In this regard,a novel sequence content resolver-based hybrid security scheme suitable to tackle FDI attacks on GOOSE and SV is proposed.Furthermore,the computational performance of the proposed hybrid security scheme is presented to demonstrate its applicability to the time critical GOOSE and SV protocols.