The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can ...The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also展开更多
This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these ...This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.展开更多
Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in orde...Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in order to reduce cost in the testing phase. Nowadays, real time PV simulators are obtained by using analog and/or digital components. In this paper, a real-time simulation of a PV system with a boost converter was proposed using only the digital signal processor (DSP) processor with two DC voltage sources to emulate the temperature and irradiation in the PV system. A MATLAB/ Simulink environment was used to develop the real-time PV system with a boost converter into a C-program and build it into a DSP controller TMS320F28335. Besides, the performance of the real-time DSP-based PV was tested in different temperature and irradiation conditions to observe the P-V and V-I characteristics. Further, the performance of the PV with a boost converter was tested at different temperatures and irradiations using MPPT algorithms. This scheme was tested through simulation and the results were validated with that of standard conditions given in the PV data sheets. Implementation of this project helped to attract more researchers to study renewable energy applications without real sources. This might facilitate the study of PV systems in a real-time scenario and the evaluation of what should be expected for PV modules available in the market.展开更多
Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the...Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.展开更多
The main objective of this paper is to develop PI and fuzzy controllers to analyze the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt ac...The main objective of this paper is to develop PI and fuzzy controllers to analyze the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt active filters (SHAFs) under balanced, unbalanced, and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, both controllers converge to the same compensation characteristics. However, if the supply voltages are distorted and/or unbalanced sinusoidal, these controllers result in different degrees of compensation in harmonics. The p-q control strategy with PI controller is unable to yield an adequate solution when source voltages are not ideal. Extensive simulations were carried out with balance, unbalanced, and non-sinusoidal conditions. Simulation results validate the superiority of fuzzy logic controller over PI controller. The three-phase four-wire SHAF system is also implemented on a real-time digital simulator (RTDS hardware) to further verify its effective-ness. The detailed simulation and RTDS hardware results are included.展开更多
This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operatin...This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operating condition,a control and protection strategy against the fault with normal blocking of the converter is proposed.In practical,applications encountering such a fault,the MMC at the fault side may experience different conditions of blocking failure.The blocking failures may occur on:①the whole converter;②one converter arm;③one sub-module(SM)/several SMs of one converter arm;④other conditions.The phenomenon of the multi-terminal HVDC(MTDC)system following the fault is analyzed under the first three conditions with real-time simulations using the real-time digital simulator(RTDS).Based on the impact of different conditions on the MTDC system,the necessity of utilizing special control and protection is discussed.A special control and protection strategy is proposed for emergency conditions,and its effectiveness is verified by real-time simulation results.展开更多
文摘The paper intfoduces a PC-DSP based real-time digital simulator which is portable in size and aimed at the closed-loop testing of various types of protective relays for their design and application. The simulator can be widely used in not only concerning utilities but also manufacturers and research / certification institutes because of its many functions. The hardware architecture and software implementation of the simulator are described. The main features and functions of the simulator are also
文摘This paper discusses some techniques for treating discontinuities of the right-hand functions of ordinary differential equations (ODEs) in real-time digital simulation (RTDS). The numericalexperiments show that these techniques are effective.
文摘Recently, real-time simulation of renewable energy sources are indispensible for evaluating the performance of the maximum power point tracking (MPPT) controller, especially in the photovoltaic (PV) system in order to reduce cost in the testing phase. Nowadays, real time PV simulators are obtained by using analog and/or digital components. In this paper, a real-time simulation of a PV system with a boost converter was proposed using only the digital signal processor (DSP) processor with two DC voltage sources to emulate the temperature and irradiation in the PV system. A MATLAB/ Simulink environment was used to develop the real-time PV system with a boost converter into a C-program and build it into a DSP controller TMS320F28335. Besides, the performance of the real-time DSP-based PV was tested in different temperature and irradiation conditions to observe the P-V and V-I characteristics. Further, the performance of the PV with a boost converter was tested at different temperatures and irradiations using MPPT algorithms. This scheme was tested through simulation and the results were validated with that of standard conditions given in the PV data sheets. Implementation of this project helped to attract more researchers to study renewable energy applications without real sources. This might facilitate the study of PV systems in a real-time scenario and the evaluation of what should be expected for PV modules available in the market.
文摘Based on real-time digital simulations(RTDS),a laboratory environment similar to the real-time operation situation of the Three Gorges Hydropower Station is established.Then,the causes for the power fluctuation of the second generator by errors in the rotor rotating speed calculation are found,and the tuning method of the speed related parameters are given.The damping and reverse tuning characteristics of power system stabilizers(PSSs)in the digital automatic voltage regulator(AVR)are compared and investigated in the frequency range of 0.18-1.1 Hz.The efficiency of the proposed tuning method for ensuring power system stability is verified by RTDS.Finally,field tests show the validity of the laboratory test results.
文摘The main objective of this paper is to develop PI and fuzzy controllers to analyze the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt active filters (SHAFs) under balanced, unbalanced, and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, both controllers converge to the same compensation characteristics. However, if the supply voltages are distorted and/or unbalanced sinusoidal, these controllers result in different degrees of compensation in harmonics. The p-q control strategy with PI controller is unable to yield an adequate solution when source voltages are not ideal. Extensive simulations were carried out with balance, unbalanced, and non-sinusoidal conditions. Simulation results validate the superiority of fuzzy logic controller over PI controller. The three-phase four-wire SHAF system is also implemented on a real-time digital simulator (RTDS hardware) to further verify its effective-ness. The detailed simulation and RTDS hardware results are included.
基金This work is supported by UK EPSRC and UK National Grid.
文摘This paper investigates a control and protection strategy for a four-terminal modular multilevel converter(MMC)based high-voltage direct current(HVDC)system under a converter-side AC fault.Based on the system operating condition,a control and protection strategy against the fault with normal blocking of the converter is proposed.In practical,applications encountering such a fault,the MMC at the fault side may experience different conditions of blocking failure.The blocking failures may occur on:①the whole converter;②one converter arm;③one sub-module(SM)/several SMs of one converter arm;④other conditions.The phenomenon of the multi-terminal HVDC(MTDC)system following the fault is analyzed under the first three conditions with real-time simulations using the real-time digital simulator(RTDS).Based on the impact of different conditions on the MTDC system,the necessity of utilizing special control and protection is discussed.A special control and protection strategy is proposed for emergency conditions,and its effectiveness is verified by real-time simulation results.