The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of a...The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.展开更多
On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.Th...On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.The numerical experiments and physical analysis of the results confirm the efficiency of the proposed WA-systems of Kravchenko functions.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current...This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.展开更多
微处理器芯片的生态建设是高端装备与智能微系统自主、可控的关键,尽管国产数字信号处理(digital signal processing, DSP)器件及其相关开发应用技术近年来得到了一定的发展,但与需求仍存在较大差距。在主动噪声控制领域,前馈型多通道...微处理器芯片的生态建设是高端装备与智能微系统自主、可控的关键,尽管国产数字信号处理(digital signal processing, DSP)器件及其相关开发应用技术近年来得到了一定的发展,但与需求仍存在较大差距。在主动噪声控制领域,前馈型多通道控制方案比单通道有较大的控制范围和较好的性能,但对系统的运算能力有较高的要求。文章以多通道FxLMS算法为基础,对多通道降噪系统的运算量进行了分析,依据国产DSP开发板的电路结构,设计了控制系统方案,并进行了实验研究。实验表明,所设计的噪声控制系统运算效率较ARM作为运算器提高了80%,对100~1 000 Hz内的周期性噪声信号衰减达到15~20 dB,证明了该方案的正确性。展开更多
The absolute delay caused by equipment of radio navigation satellite service (RNSS) signal channel must be calibrated in the application of positioning. The measurement accuracy of absolute delay will affect the posit...The absolute delay caused by equipment of radio navigation satellite service (RNSS) signal channel must be calibrated in the application of positioning. The measurement accuracy of absolute delay will affect the positioning precision of RNSS user. An absolute delay measurement technique using digital envelope detection was developed for RNSS signal transmission channel. The RNSS transmission signal of navigation satellite and the one pulse per second (1PPS)generated by satellite time keeping system were sampled synchronously. With sampling data of 1PPS,the reference point of the absolute delay can be decided at first,and then sampling data of RNSS transmission signal were truncated. The truncated data were processed using digital envelop detection algorithm to search the phase converting points of RNSS signal. Finally,the absolute delay of RNSS signal transmitting channel was calculated. Uncertainty of measurement with proposed technique is lower than 0. 2 ns as the sampling frequency is 10 GHz.展开更多
Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms,while energy characteristics are crucial for practical application because any hardware realiz...Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms,while energy characteristics are crucial for practical application because any hardware realizations of nonlinear systems are relative to energy flow.The involvement of memristive terms relative to memristors enables multistability and initial-dependent property in memristive systems.In this study,two kinds of memristors are used to couple a capacitor or an inductor,along with a nonlinear resistor,to build different neural circuits.The corresponding circuit equations are derived to develop two different types of memristive oscillators,which are further converted into two kinds of memristive maps after linear transformation.The Hamilton energy function for memristive oscillators is obtained by applying the Helmholz theorem or by mapping from the field energy of the memristive circuits.The Hamilton energy functions for both memristive maps are obtained by replacing the gains and discrete variables for the memristive oscillator with the corresponding parameters and variables.The two memristive maps have rich dynamic behaviors including coherence resonance under noisy excitation,and an adaptive growth law for parameters is presented to express the self-adaptive property of the memristive maps.A digital signal process(DSP)platform is used to verify these results.Our scheme will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map-energy calculation.展开更多
In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP...In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.展开更多
We experimentally built a photonics-aided long-distance large-capacity millimeter-wave wireless transmission system and demonstrated a delivery of 40 Gbit/s W-band 16-ary quadrature amplitude modulation(QAM)signal ove...We experimentally built a photonics-aided long-distance large-capacity millimeter-wave wireless transmission system and demonstrated a delivery of 40 Gbit/s W-band 16-ary quadrature amplitude modulation(QAM)signal over 4600 m wireless distance at 88.5 GHz.Advanced offline digital signal processing algorithms are proposed and employed for signal recovery,which makes the bit-error ratio under 2.4×10^(−2).To the best of our knowledge,this is the first field-trial demonstration of>4 km W-band 16QAM signal transmission,and the result achieves a record-breaking product of wireless transmission capacity and distance,i.e.,184(Gbit/s)·km,for high-speed and long-distance W-band wireless communication.展开更多
文摘The modified atomic transformations are constructed and proved. On their basis the new complex analytic wavelets are obtained. The proof of the Fourier transforms existence in L~ and L2 on the basis of the theory of atomic functions (AF) are presented. The numerical experiments of digital time series processing and physical analysis of the results confirm the efficiency of the proposed transforms.
基金Russian Foundation for Basic Research(RFBR)(No.12-02-90425)
文摘On the basis of modified atomic transformations the new WA-systems of Kravchenko functions are constructed.As an example the digital processing of time series of the various physical nature processing is considered.The numerical experiments and physical analysis of the results confirm the efficiency of the proposed WA-systems of Kravchenko functions.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
文摘This is a paper about laser gyro sign a l processing circuit which is designed based on field-programmable gate array(FPGA) and digital signal processor(DSP).Through a pre-amplifier circuit,FPGA and DSP,a weak current signal is converted and transferred,then sent to the computer to display the final results.Through the laser gyro performance te sting,the obtained results coincide with those of the existing methods.Thus th e d esigned circuit realizes the function of laser gyro signal processing.
基金National Science and Technology Major Project of China(No.DHZX01A02004)
文摘The absolute delay caused by equipment of radio navigation satellite service (RNSS) signal channel must be calibrated in the application of positioning. The measurement accuracy of absolute delay will affect the positioning precision of RNSS user. An absolute delay measurement technique using digital envelope detection was developed for RNSS signal transmission channel. The RNSS transmission signal of navigation satellite and the one pulse per second (1PPS)generated by satellite time keeping system were sampled synchronously. With sampling data of 1PPS,the reference point of the absolute delay can be decided at first,and then sampling data of RNSS transmission signal were truncated. The truncated data were processed using digital envelop detection algorithm to search the phase converting points of RNSS signal. Finally,the absolute delay of RNSS signal transmitting channel was calculated. Uncertainty of measurement with proposed technique is lower than 0. 2 ns as the sampling frequency is 10 GHz.
基金supported by the National Natural Science Foundation of China(No.12072139).
文摘Mathematical models can produce desired dynamics and statistical properties with the insertion of suitable nonlinear terms,while energy characteristics are crucial for practical application because any hardware realizations of nonlinear systems are relative to energy flow.The involvement of memristive terms relative to memristors enables multistability and initial-dependent property in memristive systems.In this study,two kinds of memristors are used to couple a capacitor or an inductor,along with a nonlinear resistor,to build different neural circuits.The corresponding circuit equations are derived to develop two different types of memristive oscillators,which are further converted into two kinds of memristive maps after linear transformation.The Hamilton energy function for memristive oscillators is obtained by applying the Helmholz theorem or by mapping from the field energy of the memristive circuits.The Hamilton energy functions for both memristive maps are obtained by replacing the gains and discrete variables for the memristive oscillator with the corresponding parameters and variables.The two memristive maps have rich dynamic behaviors including coherence resonance under noisy excitation,and an adaptive growth law for parameters is presented to express the self-adaptive property of the memristive maps.A digital signal process(DSP)platform is used to verify these results.Our scheme will provide a theoretical basis and experimental guidance for oscillator-to-map transformation and discrete map-energy calculation.
基金Supported by the National Natural Science Foundation of China (No.60472046)
文摘In this paper, we present an optimized design method for high-speed embedded image processing system using 32 bit floating-point Digital Signal Processor (DSP) and Complex Programmable Logic Device (CPLD). The DSP acts as the main processor of the system: executes digital image processing algorithms and operates other devices such as image sensor and CPLD. The CPLD is used to acquire images and achieve complex logic control of the whole system. Some key technologies are introduced to enhance the performance of our system. In particular, the use of DSP/BIOS tool to develop DSP applications makes our program run much more efficiently. As a result, this system can provide an excellent computing platform not only for executing complex image processing algorithms, but also for other digital signal processing or multi-channel data collection by choosing different sensors or Analog-to-Digital (A/D) converters.
基金partially supported by the National Key R&D Program of China(No.2018YFB1800905)the National Natural Science Foundation of China(Nos.61935005,91938202,61720106015,61835002,62127802,and 61805043).
文摘We experimentally built a photonics-aided long-distance large-capacity millimeter-wave wireless transmission system and demonstrated a delivery of 40 Gbit/s W-band 16-ary quadrature amplitude modulation(QAM)signal over 4600 m wireless distance at 88.5 GHz.Advanced offline digital signal processing algorithms are proposed and employed for signal recovery,which makes the bit-error ratio under 2.4×10^(−2).To the best of our knowledge,this is the first field-trial demonstration of>4 km W-band 16QAM signal transmission,and the result achieves a record-breaking product of wireless transmission capacity and distance,i.e.,184(Gbit/s)·km,for high-speed and long-distance W-band wireless communication.