As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliabilit...As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.展开更多
The ambiguity function of Chinese standard Digital Television Terrestrial Broadcasting (DTTB) signals for passive radar contains one main peak and many side peaks. The side peaks may cause the false alarms. The relati...The ambiguity function of Chinese standard Digital Television Terrestrial Broadcasting (DTTB) signals for passive radar contains one main peak and many side peaks. The side peaks may cause the false alarms. The relative positions and the reasons for the side peaks are analyzed and a new algorithm for side peaks suppression is proposed in this paper. The algorithm, in consideration of the characteristics of the structure of the frame, can eliminate the side peaks completely in the valid Doppler observation interval by setting the reference signals to zero at equal intervals. Both the simulative and experimental results show that this algorithm can improve the performance of target detection of the passive radar based on DTTB signal.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 61931015the Peng Cheng Laboratory under Grant PCL2021A10+1 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(No.JSGG20201103095805015)sponsored by Tsinghua University-Yunnan Mobile Digital TV Company Ltd.,Joint Research Center(JCICBN)。
文摘As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.
文摘The ambiguity function of Chinese standard Digital Television Terrestrial Broadcasting (DTTB) signals for passive radar contains one main peak and many side peaks. The side peaks may cause the false alarms. The relative positions and the reasons for the side peaks are analyzed and a new algorithm for side peaks suppression is proposed in this paper. The algorithm, in consideration of the characteristics of the structure of the frame, can eliminate the side peaks completely in the valid Doppler observation interval by setting the reference signals to zero at equal intervals. Both the simulative and experimental results show that this algorithm can improve the performance of target detection of the passive radar based on DTTB signal.