期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Recognition of Handwritten Words from Digital Writing Pad Using MMU-SNet
1
作者 V.Jayanthi S.Thenmalar 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3551-3564,共14页
In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognit... In this paper,Modified Multi-scale Segmentation Network(MMU-SNet)method is proposed for Tamil text recognition.Handwritten texts from digi-tal writing pad notes are used for text recognition.Handwritten words recognition for texts written from digital writing pad through text file conversion are challen-ging due to stylus pressure,writing on glass frictionless surfaces,and being less skilled in short writing,alphabet size,style,carved symbols,and orientation angle variations.Stylus pressure on the pad changes the words in the Tamil language alphabet because the Tamil alphabets have a smaller number of lines,angles,curves,and bends.The small change in dots,curves,and bends in the Tamil alphabet leads to error in recognition and changes the meaning of the words because of wrong alphabet conversion.However,handwritten English word recognition and conversion of text files from a digital writing pad are performed through various algorithms such as Support Vector Machine(SVM),Kohonen Neural Network(KNN),and Convolutional Neural Network(CNN)for offline and online alphabet recognition.The proposed algorithms are compared with above algorithms for Tamil word recognition.The proposed MMU-SNet method has achieved good accuracy in predicting text,about 96.8%compared to other traditional CNN algorithms. 展开更多
关键词 digital handwritten writing pad tamil text recognition SYLLABLE DIALECT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部