Digital control of a general-purpose switching power supply is one of the key technologies to perform the high reliability and the intelligent function demanded for the next generation. The contribution of this paper ...Digital control of a general-purpose switching power supply is one of the key technologies to perform the high reliability and the intelligent function demanded for the next generation. The contribution of this paper is the development of a digital control-based switching power supply. In the developed system, the generation method of the optimal voltage reference to eliminate the limit cycle oscillation of output voltage due to the AD/DA resolution is proposed. In the proposed method, the variation of the input power source voltage can be also compensated. The effectiveness of the proposed optimal reference generation method is experimentally verified.展开更多
A digitally controlled oscillator(DCO) using a three-transistor XOR gate as the variable load has been presented.A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also pro...A digitally controlled oscillator(DCO) using a three-transistor XOR gate as the variable load has been presented.A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also proposed. Three-,five- and seven-stage DCO circuits have been designed using the proposed delay cell.The output frequency is controlled digitally with bits applied to the delay cells.The three-bit DCO shows output frequency and power consumption variation in the range of 3.2486-4.0267 GHz and 0.6121-0.3901 mW,respectively,with a change in the control word 111-000.The five-bit DCO achieves frequency and power of 1.8553-2.3506 GHz and 1.0202-0.6501 mW,respectively,with a change in the control word 11111-00000.Moreover,the seven-bit DCO shows a frequency and power consumption variation of 1.3239-1.6817 GHz and 1.4282-0.9102 mW,respectively, with a varying control word 1111111-0000000.The power consumption and output frequency of the proposed circuits have been compared with earlier reported circuits and the present approaches show significant improvements.展开更多
A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 μm CMOS process with six meta...A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 μm CMOS process with six metal layers. A third new way to change capacitance is proposed and implemented in this work. Results show that the phase noise at I MHz offset frequency is below -122.5 dBc/Hz while drawing a current of only 4.8 mA from a 1.8 V supply. Also, the DCO can work at low supply voltage conditions with a 1.6 V power supply and 4.1 mA supply current for the DCO's core circuit, achieving a phase-noise of-121.5 dBc/Hz at offset of 1 MHz. It demonstrates that the supply pushing of DCO is less than 10 MHz/V.展开更多
A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which a...A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.展开更多
Digital controlled oscillators(DCOs) are the core of all digital phase locked loop(ADPLL) circuits. Here,DCO structures with reduced hardware and power consumption having full digital control have been proposed. T...Digital controlled oscillators(DCOs) are the core of all digital phase locked loop(ADPLL) circuits. Here,DCO structures with reduced hardware and power consumption having full digital control have been proposed. Three different DCO architectures have been proposed based on ring based topology.Three,four and five bit controlled DCO with NMOS,PMOS and NMOS PMOS transistor switching networks are presented.A three-transistor XNOR gate has been used as the inverter which is used as the delay cell.Delay has been controlled digitally with a switch network of NMOS and PMOS transistors.The three bit DCO with one NMOS network shows frequency variations of 1.6141-1.8790 GHz with power consumption variations 251.9224-276.8591μW. The four bit DCO with one NMOS network shows frequency variation of 1.6229-1.8868 GHz with varying power consumption of 251.9225-278.0740μW.A six bit DCO with one NMOS switching network gave an output frequency of 1.7237-1.8962 GHz with power consumption of 251.928-278.998μW.Output frequency and power consumption results for 4 6 bit DCO circuits with one PMOS and NMOS PMOS switching network have also been presented.The phase noise parameter with an offset frequency of 1 MHz has also been reported for the proposed circuits.Comparisons with earlier reported circuits have been made and the present approach shows advantages over previous circuits.展开更多
A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage change...A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.展开更多
An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit ...An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz.展开更多
文摘Digital control of a general-purpose switching power supply is one of the key technologies to perform the high reliability and the intelligent function demanded for the next generation. The contribution of this paper is the development of a digital control-based switching power supply. In the developed system, the generation method of the optimal voltage reference to eliminate the limit cycle oscillation of output voltage due to the AD/DA resolution is proposed. In the proposed method, the variation of the input power source voltage can be also compensated. The effectiveness of the proposed optimal reference generation method is experimentally verified.
文摘A digitally controlled oscillator(DCO) using a three-transistor XOR gate as the variable load has been presented.A delay cell using an inverter and a three-transistor XOR gate as the variable capacitance is also proposed. Three-,five- and seven-stage DCO circuits have been designed using the proposed delay cell.The output frequency is controlled digitally with bits applied to the delay cells.The three-bit DCO shows output frequency and power consumption variation in the range of 3.2486-4.0267 GHz and 0.6121-0.3901 mW,respectively,with a change in the control word 111-000.The five-bit DCO achieves frequency and power of 1.8553-2.3506 GHz and 1.0202-0.6501 mW,respectively,with a change in the control word 11111-00000.Moreover,the seven-bit DCO shows a frequency and power consumption variation of 1.3239-1.6817 GHz and 1.4282-0.9102 mW,respectively, with a varying control word 1111111-0000000.The power consumption and output frequency of the proposed circuits have been compared with earlier reported circuits and the present approaches show significant improvements.
文摘A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 μm CMOS process with six metal layers. A third new way to change capacitance is proposed and implemented in this work. Results show that the phase noise at I MHz offset frequency is below -122.5 dBc/Hz while drawing a current of only 4.8 mA from a 1.8 V supply. Also, the DCO can work at low supply voltage conditions with a 1.6 V power supply and 4.1 mA supply current for the DCO's core circuit, achieving a phase-noise of-121.5 dBc/Hz at offset of 1 MHz. It demonstrates that the supply pushing of DCO is less than 10 MHz/V.
文摘A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.
文摘Digital controlled oscillators(DCOs) are the core of all digital phase locked loop(ADPLL) circuits. Here,DCO structures with reduced hardware and power consumption having full digital control have been proposed. Three different DCO architectures have been proposed based on ring based topology.Three,four and five bit controlled DCO with NMOS,PMOS and NMOS PMOS transistor switching networks are presented.A three-transistor XNOR gate has been used as the inverter which is used as the delay cell.Delay has been controlled digitally with a switch network of NMOS and PMOS transistors.The three bit DCO with one NMOS network shows frequency variations of 1.6141-1.8790 GHz with power consumption variations 251.9224-276.8591μW. The four bit DCO with one NMOS network shows frequency variation of 1.6229-1.8868 GHz with varying power consumption of 251.9225-278.0740μW.A six bit DCO with one NMOS switching network gave an output frequency of 1.7237-1.8962 GHz with power consumption of 251.928-278.998μW.Output frequency and power consumption results for 4 6 bit DCO circuits with one PMOS and NMOS PMOS switching network have also been presented.The phase noise parameter with an offset frequency of 1 MHz has also been reported for the proposed circuits.Comparisons with earlier reported circuits have been made and the present approach shows advantages over previous circuits.
文摘A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.
基金This work is supported by the National Natural Science Foundation of China(No.61674036)the National Key Research and Development Program of China(No.2018YFB2202200).
文摘An 80-GHz DCO based on modified hybrid tuning banks is introduced in this paper.To achieve sub-MHz frequency res-olution with reduced circuit complexity,the improved circuit topology replaces the conventional circuit topology with two binary-weighted SC cells,enabling eight SC-cell-based improved SC ladders to achieve the same fine-tuning steps as twelve SC-cell-based conventional SC ladders.To achieve lower phase noise and smaller chip size,the promoted binary-weighted digi-tally controlled transmission lines(DCTLs)are used to implement the coarse and medium tuning banks of the DCO.Compared to the conventional thermometer-coded DCTLs,control bits of the proposed DCTLs are reduced from 30 to 8,and the total length is reduced by 34.3%(from 122.76 to 80.66μm).Fabricated in 40-nm CMOS,the DCO demonstrated in this work fea-tures a small fine-tuning step(483 kHz),a high oscillation frequency(79-85 GHz),and a smaller chip size(0.017 mm^(2)).Com-pared to previous work,the modified DCO exhibits an excellent figure of merit with an area(FoMA)of-198 dBc/Hz.