The α + β ? β phase transformation kinetics of TC21 Ti-alloy during continuous heating and cooling were studied using a dilatometric technique. Dilatometric heating curve exhibited that two characteristic reflectio...The α + β ? β phase transformation kinetics of TC21 Ti-alloy during continuous heating and cooling were studied using a dilatometric technique. Dilatometric heating curve exhibited that two characteristic reflection points can be observed with increasing the heating temperature. Ts referred to the initial transformation temperature of α + β → β and Tf referred to the final transformation temperature of α + β → β. Ts was reported at 720°C, whereas the corresponding Tf was obtained at 950°C. The initial and final transforming temperatures by the first derivative curve were reported at 730°C and 955°C, respectively, which are close to the values obtained in the dilatometric heating curve. Dilatometric cooling curve showed that the starting temperature of β → β + α phase transformation was 880°C;however, the corresponding finishing temperature was 670°C. The starting and finishing temperatures using the first derivative curve were obtained at 665°C and 885°C, respectively. The first derivative for the studied dilatometric heating and cooling curves showed that the starting and finishing temperatures of α + β ? β phase transformation were more accurate and objective. Results show the α + β → β transformation heating curve exhibits a typical S-shaped pattern.展开更多
Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N...Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization.展开更多
Ti6Al4V powders with three different particle size distributions(0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical prop...Ti6Al4V powders with three different particle size distributions(0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical properties. The sintering kinetics was determined by dilatometry at temperatures from 900 to 1260°C. The mechanical properties of the sintered samples were evaluated by microhardness and compression tests. The sintering kinetics indicated that the predominant mechanism depends on the relative density irrespective of the particle size used. The mechanical properties of the sintered samples are adversely affected by increasing pore volume fraction. The elastic Young's modulus and yield stress follow a power law function of the relative density. The fracture behavior after compression is linked to the neck size developed during sintering, exhibiting two different mechanisms of failure: interparticle neck breaking and intergranular cracking in samples with relative densities below and above of 90%, respectively. The main conclusion is that relative density is responsible for the kinetics, mechanical properties, and failure behavior of Ti6 Al4 V powders.展开更多
Coatings of metal matrix composites(Cu?WC)were fabricated by solid-state sintering.WC reinforcing particles indifferent quantities from5%up to30%(volume fraction)were mixed with Cu particles.After mixing,the powders w...Coatings of metal matrix composites(Cu?WC)were fabricated by solid-state sintering.WC reinforcing particles indifferent quantities from5%up to30%(volume fraction)were mixed with Cu particles.After mixing,the powders were poured ontothe surface of copper substrates.Sintering was carried out at1000°C under a reducing atmosphere in a vertical dilatometer.Sinteringkinetics was affected by both rigid substrates and WC particles which retarded the radial and axial densification of powders.However,the coatings were strongly attached to the substrate,and WC particles were randomly distributed within the matrix.The addition ofthe reinforcing particles enhanced the microhardness and reduced the volume loss in wear tests to1/17compared to the unreinforcedsample.The predominant wear mechanism was identified as abrasion at a load of5N.20%WC(volume fraction)reinforcingparticles led to the maximum values of properties for the composite coating.展开更多
The austenite formation kinetics in unalloyed cast ductile iron was studied on the basis of dilatometry measurements, and Avrami's equation was used to estimate the material's kinetic parameters. A continuous heatin...The austenite formation kinetics in unalloyed cast ductile iron was studied on the basis of dilatometry measurements, and Avrami's equation was used to estimate the material's kinetic parameters. A continuous heating transformation diagram was constructed us-ing heating rates in the range of 0.06 to 0.83℃·s^-1. As the heating rate was augmented, the critical temperatures, c1A and Aα, as well as the intercritical range, which was evaluated as the difference between the critical temperatures, α c1Δ T =A_a- A_c1 , increased. At a low heating rate, the kinetics of austenite formation was slow as a consequence of the iron's silicon content. The effect of heating rate on k and n, the kinetic parameters of Avrami's equation, was also determined. Parameter n, which is associated with nucleation sites and growth geometry, de-creased with an increase in heating rate. In addition, parameter k increased with the increase of heating rate, suggesting that the nucleation and growth rates are carbon-and silicon-diffusion controlled during austenite formation under continuous heating.展开更多
Comparison between filter pressing and isostatic pressing for submicrometer alumina powder has been systematically made. Obvious improvements in true porosity, sintering behaviour, and microstructure of green compacts...Comparison between filter pressing and isostatic pressing for submicrometer alumina powder has been systematically made. Obvious improvements in true porosity, sintering behaviour, and microstructure of green compacts without cracking and in agglomeration of final ceramics have been achieved.展开更多
Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied du...Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps: (1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Dilatometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C.s^-1 to 0.67°C.s^-1. The austenite volume fraction was fitted using the Johnson-Mehl-Avrami-Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heat- ing rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was determined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation; in the second step, it was controlled by the dissolution of residual ferrite to austenite.展开更多
The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain gro...The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain growth. Sintering was controlled by mixed mode, i.e. transient liquid phase sintering, formation of intermetallics, and Ti grain boundary diffusion in TiAl2 and other intermetallics.展开更多
Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experim...Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experiments were also carried out to determine the transformation temperatures at different cooling rates. Specimens for hot compression tests were homogenized at 1050℃ for 10 min and then quickly cooled to different straining temperatures from 1050 to 850℃. Cooling rates were chosen fast enough to prevent high temperature transformation during cooling. Compression tests were conducted at temperatures from 1050 to 850℃ in steps of 50℃ at constant true strain rates of 10-3 or 10-2 s-1. The apparent activation energy for compression in two-phase region was calculated 420 kJ·mol-1. Partial globularization of a phase was observed in the specimen deformed at low strain rates and at temperatures near the transformation zone and annealed after deformation.展开更多
Four new vanadium substituted Dawson-type heteropoly acids H7[P2Mo17VO62]·39H2O(1), H8[P2Mo16V2O62]·41H2O(2), H9[P2Mo15V3O62]·51H2O(3) and H8[P2Mo14V4O62H2]·45H2O(4) were prepared respec-ti...Four new vanadium substituted Dawson-type heteropoly acids H7[P2Mo17VO62]·39H2O(1), H8[P2Mo16V2O62]·41H2O(2), H9[P2Mo15V3O62]·51H2O(3) and H8[P2Mo14V4O62H2]·45H2O(4) were prepared respec-tively. Their structures were determined by IR and ICP. The inhibition effects of vanadium substituted Dawson-type heteropoly acids(Mo, P) on free radical polymerization of methyl methacrylate(MMA) were investigated by dilatometry. The results show that the rate of the polymerization of MMA decreases and the inhibition effects of the four heteropoly acids reach the inhibitor performance of hydroquinone at a certain ratio.展开更多
This study aims to investigate the effect of the 1-step quenching and partitioning (Q&P) process on the microstructure and the resulting Vicker' s hardness of 0.3C-1.5Si-1.5Mn steel by using in-situ dilatometry ,o...This study aims to investigate the effect of the 1-step quenching and partitioning (Q&P) process on the microstructure and the resulting Vicker' s hardness of 0.3C-1.5Si-1.5Mn steel by using in-situ dilatometry ,optical microscopy ( OM ), scanning electron microscopy ( SEM ), X-ray diffractometry ( XRD ), and Vicker ' s hardness measurement. Systematic analyses indicate that the microstructure of the specimens quenched and partitioned at 150℃ ,200 ℃ ,250℃ ,and 300℃ mainly comprises lath martensite and retained austenite. The dilatometry curve of the specimen partitioned at 150℃ is presumably ascribed to the formation of isothermal martensite. In the early stages of partitioning at 200℃,the nearly unchanged dilatation curve is closely related to the synergistic effect of isothermal martensite formation and transitional epsilon carbide precipitation. In the later stages of partitioning at 200 ℃ ,the slight increase in the dilatation curve is due to the continuous isothermal martensite formation. With further increase in partitioning temperature to 250℃, the dilatation increases gradually up to 3600 s, which is related to carbon partitioning and lower bainite formation. Partitioning at a higher temperature of 300 ℃ causes a rapid increase in the dilatation curve during the initial stages, which subsequently levels off upon prolonging the partitioning time. This is mainly attributed to the rapid diffusion of carbon from athermal martensite to retained austenite and continuous formation of lower bainite.展开更多
Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser sc...Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite.Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.展开更多
The kinetic behavior of isothermal and nonisothermal crystallization of nylon-1010 has been studied by means of dilatometry and differential scanning calorimetry, respectively. The isothermal and nonisothermal process...The kinetic behavior of isothermal and nonisothermal crystallization of nylon-1010 has been studied by means of dilatometry and differential scanning calorimetry, respectively. The isothermal and nonisothermal process can be described by Avrami equation and Ozawa equation, respectively. From the experimental results the kinetic parameters of crystallization and crystalline mechanism for isothermal and nonisothermal measurements are discussed.展开更多
The microstructure,alloying reaction and sintering behavior of the powder produced by Mechanical Al-loying(MA)for 8 h from 64 wt.-% Ti powder and 36 wt.-% Al powder were studied by scanning electronmicroscopy,optical ...The microstructure,alloying reaction and sintering behavior of the powder produced by Mechanical Al-loying(MA)for 8 h from 64 wt.-% Ti powder and 36 wt.-% Al powder were studied by scanning electronmicroscopy,optical microscopy,X-ray diffractometry,differential scanning calorimetry(DSC)and dilatometry.The mechanically alloyed powder partictes are Ti-Al composite particles.Thus,titanium aluminides can formeasily in the powder through diffusion during heat treatment.It is shown that the sintering behavior of this pow-der,different from the behaviors of TiAl alloy powder and mixed powder of 64 wt.-% Ti powder and 36 wt.-%Al powder,changes from expansion at temperatures below 1000℃ to shrinkage at temperatures above 1000℃.Homogeneously alloyed TiAl material with a density over 96% of the theoretical density can be produced fromthe mechanically alloyed powder by compaction-sintering.展开更多
In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical...In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions.展开更多
The discontinuous precipitation kinetics and mechanism of the α (Ag-rich) phase in Cu-7 wt% Ag alloy has been investigated using dilatometric and calorimetric anisothermal analysis, optical microscopy, scanning and t...The discontinuous precipitation kinetics and mechanism of the α (Ag-rich) phase in Cu-7 wt% Ag alloy has been investigated using dilatometric and calorimetric anisothermal analysis, optical microscopy, scanning and transmission electron microscopy and X-ray diffraction. Dilatometric and calorimetric curves present at ~ 500°C an important effect related to the ? (Ag-rich) phase formation and consequently the matrix β (Cu-rich) depletion. The nucleation and growth of the precipitated phase show cells formation at initial grain boundaries;a fine lamellar structure is detected by SEM and TEM and consists of alternate lamellar of the α (Ag-rich) and β (Cu-rich)-solid solutions. Cellular precipitation leads to the simultaneous appearance of two diffraction peaks and occurs apparently according to the Fournelle and Clark’s mechanism. Obtained results give an Avrami exponent n = 2.0 ± 0.2 in agreement with an interfacial controlled process having an activation energy Ea equals to 99 ± 7 kJ/mol obtained from anisothermal analysis by using different isoconversion methods. This activation energy expresses the discrepancy between isoconversion methods and the analytical diffusive model. Moreover, the supersaturation rate has an effect on the lamella spacing of the precipitated cells.展开更多
This research was aimed at testing a hypothesis, that at elevated CO2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications fo...This research was aimed at testing a hypothesis, that at elevated CO2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications for injection of CO2 into deep coal seams. We have examined the experimental design issues and procedures used in the previously published studies, and experimentally investigated the physical behavior of a similar coal in the presence of COa as a function of pressure and temperature, using the same high-pressure micro-dilatometer refurbished and carefully calibrated for this purpose. No notable reduction in coal softening temperature was observed in this study.展开更多
Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling ...Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling rates was studied and the continuous cooling transformation diagrams were plotted. In order to optimize the heat treatment and improve the mechanical properties, the range of cooling rates leading to a fully bainitic microstructure (without ferrite, pearlite and especially without martensite) was determined. Bainite and martensite transformation start temperatures (Bs, Ms) were also established and compared with the values predicted by empirical equations. The important role of precipitates (especially V carbonitride particles) on final microstructure and mechanical properties was assessed.展开更多
Abstract The α + β→β phase transformation kinetics of Ti-1300 alloy during continuous heating at different heating rates were investigated using dilatometric method. Results show that the curves of the α + β...Abstract The α + β→β phase transformation kinetics of Ti-1300 alloy during continuous heating at different heating rates were investigated using dilatometric method. Results show that the curves of the α + β→β phase transformation exhibit a typical S-shaped pattern, which indicates that the α + β→β phase transformation is a nucleation-growth-controlled process. The overall activation energy of the α + β→β transformation of the alloy is 797 kJ·mol^-1. The nucleation and growth mechanism of the α + β→β transformation was also investigated using the non-isothermal Avrami exponent. The Avrami exponent during α + β→β transformation process significantly changes with transformed volume fraction increasing, which indicates that the α + β→β transformation mechanism in the Ti-1300 alloy varies at different sections.展开更多
In this study, the results of measurements on pressureless sintering behavior of Ag-SnO_2(88%wt Ag,12%wt SnO_2) pellets were reported. Dilatometric measurements, relative densities, hardness values, rupture transverse...In this study, the results of measurements on pressureless sintering behavior of Ag-SnO_2(88%wt Ag,12%wt SnO_2) pellets were reported. Dilatometric measurements, relative densities, hardness values, rupture transverse strength and electrical conductivities function of sintering temperatures were presented. A constant thermal expansion coefficient was determined, and a threshold temperature of densification(T_d) was exhibited. Sintering kinetics were reported for different temperatures. Hardness values were measured, and no increase in hardness is found under Td. Three-points bending tests were used to determine the transverse rupture strength whose evolution appears importantly well under Td. In the same manner, the increase in initial electrical conductivities begins well under Td. Under the threshold temperature, the relative increase in electrical conductivity is found to be independent of initial density of green compact pellets. This work highlights different evolutions in function of sintering temperature for the electrical conductivity and transverse rupture strength on the one hand, and for the densification and hardness on the other hand.展开更多
文摘The α + β ? β phase transformation kinetics of TC21 Ti-alloy during continuous heating and cooling were studied using a dilatometric technique. Dilatometric heating curve exhibited that two characteristic reflection points can be observed with increasing the heating temperature. Ts referred to the initial transformation temperature of α + β → β and Tf referred to the final transformation temperature of α + β → β. Ts was reported at 720°C, whereas the corresponding Tf was obtained at 950°C. The initial and final transforming temperatures by the first derivative curve were reported at 730°C and 955°C, respectively, which are close to the values obtained in the dilatometric heating curve. Dilatometric cooling curve showed that the starting temperature of β → β + α phase transformation was 880°C;however, the corresponding finishing temperature was 670°C. The starting and finishing temperatures using the first derivative curve were obtained at 665°C and 885°C, respectively. The first derivative for the studied dilatometric heating and cooling curves showed that the starting and finishing temperatures of α + β ? β phase transformation were more accurate and objective. Results show the α + β → β transformation heating curve exhibits a typical S-shaped pattern.
基金Supported by the National Natural Science Foundation of China(20176007 20376087)
文摘Crosslink polymerization kinetics of poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid),AA/AMPS hydrogels,was investigated by using dilatometry in the presence of sodium persulfate as initiator and N,N'-methylene bis(acrylamide) as crosslinker.It was found that the reaction for the crosslink polymerization of AA/AMPS hydrogels had orders of 0.58,1.14,and 0.86 with respect to the initiator,AMPS,and AA,respectively.From the Arrhenius plots,the activation energy of the crosslink polymerization was found to be about 140 and 89 kJ·mol-1 in the presence and absence of the crosslinker,respectively,in the temperature range from 45 to 65 °C.It was noted that the crosslinker had effects on the reaction order of the initiator and the activation energy due to the formation of cross-linked networks,which was verified by Fourier transfer infrared (FTIR) spectrum.To further confirm the influences of the cross-linked network structure on kinetic parameters of the crosslink polymerization,a mechanism was proposed,which highlights the different termination routes between free radical polymerization and crosslink polymerization.These results suggest that dilatometry provides a convenient tool for crosslink polymeri-zation study,and confirm that the cross-linked networks are formed in the crosslink polymerization.
基金the National Laboratory SEDEAM-National Council for Science and Technology (CONACYT)ECOS M15P01 for the financial support and the facilities to develop this study
文摘Ti6Al4V powders with three different particle size distributions(0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical properties. The sintering kinetics was determined by dilatometry at temperatures from 900 to 1260°C. The mechanical properties of the sintered samples were evaluated by microhardness and compression tests. The sintering kinetics indicated that the predominant mechanism depends on the relative density irrespective of the particle size used. The mechanical properties of the sintered samples are adversely affected by increasing pore volume fraction. The elastic Young's modulus and yield stress follow a power law function of the relative density. The fracture behavior after compression is linked to the neck size developed during sintering, exhibiting two different mechanisms of failure: interparticle neck breaking and intergranular cracking in samples with relative densities below and above of 90%, respectively. The main conclusion is that relative density is responsible for the kinetics, mechanical properties, and failure behavior of Ti6 Al4 V powders.
基金CONACy T through the project CB-167111the Scientific Research Department of the UMSNH and the Guadalajara University for the financial support and the facilities to develop this study
文摘Coatings of metal matrix composites(Cu?WC)were fabricated by solid-state sintering.WC reinforcing particles indifferent quantities from5%up to30%(volume fraction)were mixed with Cu particles.After mixing,the powders were poured ontothe surface of copper substrates.Sintering was carried out at1000°C under a reducing atmosphere in a vertical dilatometer.Sinteringkinetics was affected by both rigid substrates and WC particles which retarded the radial and axial densification of powders.However,the coatings were strongly attached to the substrate,and WC particles were randomly distributed within the matrix.The addition ofthe reinforcing particles enhanced the microhardness and reduced the volume loss in wear tests to1/17compared to the unreinforcedsample.The predominant wear mechanism was identified as abrasion at a load of5N.20%WC(volume fraction)reinforcingparticles led to the maximum values of properties for the composite coating.
基金the National Council of Science and Technology of Mexico(CONACYT) for the scholarship(No.173101) received for his doctoral studiesthe CONACYT for the support received through grant CB-178511
文摘The austenite formation kinetics in unalloyed cast ductile iron was studied on the basis of dilatometry measurements, and Avrami's equation was used to estimate the material's kinetic parameters. A continuous heating transformation diagram was constructed us-ing heating rates in the range of 0.06 to 0.83℃·s^-1. As the heating rate was augmented, the critical temperatures, c1A and Aα, as well as the intercritical range, which was evaluated as the difference between the critical temperatures, α c1Δ T =A_a- A_c1 , increased. At a low heating rate, the kinetics of austenite formation was slow as a consequence of the iron's silicon content. The effect of heating rate on k and n, the kinetic parameters of Avrami's equation, was also determined. Parameter n, which is associated with nucleation sites and growth geometry, de-creased with an increase in heating rate. In addition, parameter k increased with the increase of heating rate, suggesting that the nucleation and growth rates are carbon-and silicon-diffusion controlled during austenite formation under continuous heating.
文摘Comparison between filter pressing and isostatic pressing for submicrometer alumina powder has been systematically made. Obvious improvements in true porosity, sintering behaviour, and microstructure of green compacts without cracking and in agglomeration of final ceramics have been achieved.
基金grateful to CONACYT (grants CB-178511 and CB-178777) for their financial supportfor E. L.-M.’s scholarship (No. 174555)grateful to UNAM PAPIIT (grant IN118714) for their financial support
文摘Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps: (1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Dilatometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C.s^-1 to 0.67°C.s^-1. The austenite volume fraction was fitted using the Johnson-Mehl-Avrami-Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heat- ing rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was determined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation; in the second step, it was controlled by the dissolution of residual ferrite to austenite.
文摘The effect of Al addition (2 and 5 at. pct) on sintering kinetics of Ti power were investigated. Al reduces the sintering rates, sinter density, increases activation energy of sintering and accelerates the grain growth. Sintering was controlled by mixed mode, i.e. transient liquid phase sintering, formation of intermetallics, and Ti grain boundary diffusion in TiAl2 and other intermetallics.
文摘Ti-6AI-4V, among the Ti alloys, is the most widely used. In the present work, the behavior of Ti-6AI-4V alloy has been investigated by the uniaxial hot isothermal compression tests and a series of dilatometric experiments were also carried out to determine the transformation temperatures at different cooling rates. Specimens for hot compression tests were homogenized at 1050℃ for 10 min and then quickly cooled to different straining temperatures from 1050 to 850℃. Cooling rates were chosen fast enough to prevent high temperature transformation during cooling. Compression tests were conducted at temperatures from 1050 to 850℃ in steps of 50℃ at constant true strain rates of 10-3 or 10-2 s-1. The apparent activation energy for compression in two-phase region was calculated 420 kJ·mol-1. Partial globularization of a phase was observed in the specimen deformed at low strain rates and at temperatures near the transformation zone and annealed after deformation.
基金Supported by the National Natural Science Foundation of China(Nos.20971031, 21071035)the Key Natural Science Foundation of the Heilongjiang Province, China(No.ZD201009)
文摘Four new vanadium substituted Dawson-type heteropoly acids H7[P2Mo17VO62]·39H2O(1), H8[P2Mo16V2O62]·41H2O(2), H9[P2Mo15V3O62]·51H2O(3) and H8[P2Mo14V4O62H2]·45H2O(4) were prepared respec-tively. Their structures were determined by IR and ICP. The inhibition effects of vanadium substituted Dawson-type heteropoly acids(Mo, P) on free radical polymerization of methyl methacrylate(MMA) were investigated by dilatometry. The results show that the rate of the polymerization of MMA decreases and the inhibition effects of the four heteropoly acids reach the inhibitor performance of hydroquinone at a certain ratio.
文摘This study aims to investigate the effect of the 1-step quenching and partitioning (Q&P) process on the microstructure and the resulting Vicker' s hardness of 0.3C-1.5Si-1.5Mn steel by using in-situ dilatometry ,optical microscopy ( OM ), scanning electron microscopy ( SEM ), X-ray diffractometry ( XRD ), and Vicker ' s hardness measurement. Systematic analyses indicate that the microstructure of the specimens quenched and partitioned at 150℃ ,200 ℃ ,250℃ ,and 300℃ mainly comprises lath martensite and retained austenite. The dilatometry curve of the specimen partitioned at 150℃ is presumably ascribed to the formation of isothermal martensite. In the early stages of partitioning at 200℃,the nearly unchanged dilatation curve is closely related to the synergistic effect of isothermal martensite formation and transitional epsilon carbide precipitation. In the later stages of partitioning at 200 ℃ ,the slight increase in the dilatation curve is due to the continuous isothermal martensite formation. With further increase in partitioning temperature to 250℃, the dilatation increases gradually up to 3600 s, which is related to carbon partitioning and lower bainite formation. Partitioning at a higher temperature of 300 ℃ causes a rapid increase in the dilatation curve during the initial stages, which subsequently levels off upon prolonging the partitioning time. This is mainly attributed to the rapid diffusion of carbon from athermal martensite to retained austenite and continuous formation of lower bainite.
基金Project(2013AA031601)supported by the National High Technology Research and Development Program of ChinaProject(2012BAF04B01)supported by the National Science and Technology Pillar Program During the 12th Five-year Plan Period of China
文摘Two different kinds of experimental techniques were used to in-situ study the austenite formation during intercritical annealing in C-Mn dual phase steel. The microstructure evolution was observed by confocal laser scanning microscope, and the austenite isothermal and non-isothermal transformation kinetics were studied by dilatometry. The results indicate that banded structure is produced for the reason of composition segregation and the competition between recrystallization and phase transformation. Austenite prefers to nucleate not only at ferrite/ferrite grain boundaries, but also inside the grains of ferrite.Furthermore, the austenitizing process is accomplished mainly via migration of the existing austenite/ferrite interface rather than nucleation of new grains. The incubation process can be divided into two stages which are controlled by carbon and manganese diffusion, respectively. During the incubation process, the nucleation rate of austenite decreases, and austenite growth changes from two-dimensional to one-dimensional. The partitioning coefficient, defined as the ratio of manganese content in the austenite to that in the adjacent ferrite, increases with increasing soaking time.
基金This work was supported by the National Basic Research Project-Macromolecular Condensed State.
文摘The kinetic behavior of isothermal and nonisothermal crystallization of nylon-1010 has been studied by means of dilatometry and differential scanning calorimetry, respectively. The isothermal and nonisothermal process can be described by Avrami equation and Ozawa equation, respectively. From the experimental results the kinetic parameters of crystallization and crystalline mechanism for isothermal and nonisothermal measurements are discussed.
文摘The microstructure,alloying reaction and sintering behavior of the powder produced by Mechanical Al-loying(MA)for 8 h from 64 wt.-% Ti powder and 36 wt.-% Al powder were studied by scanning electronmicroscopy,optical microscopy,X-ray diffractometry,differential scanning calorimetry(DSC)and dilatometry.The mechanically alloyed powder partictes are Ti-Al composite particles.Thus,titanium aluminides can formeasily in the powder through diffusion during heat treatment.It is shown that the sintering behavior of this pow-der,different from the behaviors of TiAl alloy powder and mixed powder of 64 wt.-% Ti powder and 36 wt.-%Al powder,changes from expansion at temperatures below 1000℃ to shrinkage at temperatures above 1000℃.Homogeneously alloyed TiAl material with a density over 96% of the theoretical density can be produced fromthe mechanically alloyed powder by compaction-sintering.
文摘In low carbon microalloyed steels (C 〈 0.1%), the content of V, Nb and Ti affects the phases transformation kinetic during cooling in the rolling process. The final microstructure determines the required mechanical properties such as high formability, high toughness and adequate strength. For this reason it is relevant to identify and determine the volume fraction of the ferrite, bainite and martensite present in the structure. The microalloying elements: V, Nb and Ti promote carbides precipitation during cooling. The precipitates control the grain size refinement during hot rolling process and the mechanical properties of the steel. In this sense it is necessary to increase the knowledge on the microstructure evolution at different cooling rates. In this paper, the results obtained on two low carbon microalloyed steels (with C contents between 0.11%-0.06%) are reported. An integrated methodology including dilatometry in combination with microscopy techniques was applied. By EBSD (Electron Backscatter Diffraction) technique and microhardness measurements, the structural study was completed. Through a thermodynamic simulation using Fact Sage the type of precipitates in the studied steels structure at the temperature range between 950 ℃ and 450 ℃, were predicted. The information on the evolution of the steel structure at rolling process conditions is relevant to consider changes in processing conditions.
文摘The discontinuous precipitation kinetics and mechanism of the α (Ag-rich) phase in Cu-7 wt% Ag alloy has been investigated using dilatometric and calorimetric anisothermal analysis, optical microscopy, scanning and transmission electron microscopy and X-ray diffraction. Dilatometric and calorimetric curves present at ~ 500°C an important effect related to the ? (Ag-rich) phase formation and consequently the matrix β (Cu-rich) depletion. The nucleation and growth of the precipitated phase show cells formation at initial grain boundaries;a fine lamellar structure is detected by SEM and TEM and consists of alternate lamellar of the α (Ag-rich) and β (Cu-rich)-solid solutions. Cellular precipitation leads to the simultaneous appearance of two diffraction peaks and occurs apparently according to the Fournelle and Clark’s mechanism. Obtained results give an Avrami exponent n = 2.0 ± 0.2 in agreement with an interfacial controlled process having an activation energy Ea equals to 99 ± 7 kJ/mol obtained from anisothermal analysis by using different isoconversion methods. This activation energy expresses the discrepancy between isoconversion methods and the analytical diffusive model. Moreover, the supersaturation rate has an effect on the lamella spacing of the precipitated cells.
文摘This research was aimed at testing a hypothesis, that at elevated CO2 pressure coal can soften at temperatures well below those obtained in the presence of other gases. That could have serious negative implications for injection of CO2 into deep coal seams. We have examined the experimental design issues and procedures used in the previously published studies, and experimentally investigated the physical behavior of a similar coal in the presence of COa as a function of pressure and temperature, using the same high-pressure micro-dilatometer refurbished and carefully calibrated for this purpose. No notable reduction in coal softening temperature was observed in this study.
基金the financial support of Spanish Ministry of Economy and Competitiveness through the project ref.MAT2011-29039-C02-02
文摘Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling rates was studied and the continuous cooling transformation diagrams were plotted. In order to optimize the heat treatment and improve the mechanical properties, the range of cooling rates leading to a fully bainitic microstructure (without ferrite, pearlite and especially without martensite) was determined. Bainite and martensite transformation start temperatures (Bs, Ms) were also established and compared with the values predicted by empirical equations. The important role of precipitates (especially V carbonitride particles) on final microstructure and mechanical properties was assessed.
基金financially supported by the National Natural Science Foundation of China(No.51401058)the Transformation Project of Major Scientific and Technological Achievements of Shanxi Province(No.2012KTCG04-14)the Science and Technology Innovation Team Project of Shanxi Province of China(No.2012KCT-23)
文摘Abstract The α + β→β phase transformation kinetics of Ti-1300 alloy during continuous heating at different heating rates were investigated using dilatometric method. Results show that the curves of the α + β→β phase transformation exhibit a typical S-shaped pattern, which indicates that the α + β→β phase transformation is a nucleation-growth-controlled process. The overall activation energy of the α + β→β transformation of the alloy is 797 kJ·mol^-1. The nucleation and growth mechanism of the α + β→β transformation was also investigated using the non-isothermal Avrami exponent. The Avrami exponent during α + β→β transformation process significantly changes with transformed volume fraction increasing, which indicates that the α + β→β transformation mechanism in the Ti-1300 alloy varies at different sections.
基金financially supported by the French National Research Agency REF ANR(No.ANR-09-MAPR-0007-MAPR)
文摘In this study, the results of measurements on pressureless sintering behavior of Ag-SnO_2(88%wt Ag,12%wt SnO_2) pellets were reported. Dilatometric measurements, relative densities, hardness values, rupture transverse strength and electrical conductivities function of sintering temperatures were presented. A constant thermal expansion coefficient was determined, and a threshold temperature of densification(T_d) was exhibited. Sintering kinetics were reported for different temperatures. Hardness values were measured, and no increase in hardness is found under Td. Three-points bending tests were used to determine the transverse rupture strength whose evolution appears importantly well under Td. In the same manner, the increase in initial electrical conductivities begins well under Td. Under the threshold temperature, the relative increase in electrical conductivity is found to be independent of initial density of green compact pellets. This work highlights different evolutions in function of sintering temperature for the electrical conductivity and transverse rupture strength on the one hand, and for the densification and hardness on the other hand.