期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Conversion of Sugarcane Shoots and Leaves into Reducing Sugars by Pretreatment and Enzymatic Hydrolysis 被引量:1
1
作者 Teerapatr Srinorakutara Suthkamol Suttikul Pompattra Srinorakutara 《Journal of Life Sciences》 2011年第4期247-254,共8页
Sugarcane shoots and leaves consist of 38% cellulose, 30.6% hemicellulose and 12.8% lignin on dry solid (DS) basis and have the potential to serve as low cost feedstocks for ethanol production. The pretreatment and ... Sugarcane shoots and leaves consist of 38% cellulose, 30.6% hemicellulose and 12.8% lignin on dry solid (DS) basis and have the potential to serve as low cost feedstocks for ethanol production. The pretreatment and enzymatic hydrolysis conditions include particle size, alkali (NaOH)/dilute acid (H2SO4) pretreatment, chemical and substrate concentrations, temperature, autoclaving time for pretreatment, enzyme concentration, pH and temperature for hydrolysis varied were evaluated for conversion of sugarcane shoots and leaves cellulose and hemicellulose to reducing sugar. The optimum conditions were accomplished by using 14% w/v DS of 0-10 mm sugarcane shoots and leaves in particle size, pretreated with 1.5% w/v of dilute sulfuric acid at 121℃, 15 lbs/in2 for 15 min and enzymatic saccharification using 40 FPU/g DS cellulose at 50℃ and pH 5, After incubating at 160 rpm for 12 hrs, 59 g/L or 386,38 mg/g DS of reducing sugar and 50.69% saccharification were obtained. 展开更多
关键词 Cellulosic biomass dilute acid pretreatment and enzymatic hydrolysis sugarcane shoots and leaves ethanol production.
下载PDF
Preliminary evaluation of five elephant grass cultivars harvested at different time for sugar production 被引量:1
2
作者 李媛媛 张叶龙 +4 位作者 郑洪波 杜健 张红漫 吴娟子 黄和 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第7期1188-1193,共6页
Five elephant grass cultivars, Pennisetum purpureum, cv. Huanan (Huanan), P. purpureum, cv. N51 (N51), P. purpureum, cv. Sumu No. 2 (Sumu-2), ( Penniseturn americanum x P. purpureum ) x P. purpureum cv. Guimu ... Five elephant grass cultivars, Pennisetum purpureum, cv. Huanan (Huanan), P. purpureum, cv. N51 (N51), P. purpureum, cv. Sumu No. 2 (Sumu-2), ( Penniseturn americanum x P. purpureum ) x P. purpureum cv. Guimu No. 1 (Guimu-1) and P. americanum cv. Tift23A x P. purpureum cv. Tilt NS1 (Hybrid Pennisetum), at three harvest stages were studied. With dilute sulfuric acid pretreatment followed by enzymatic hydrolysis, it is found that cel- lulose conversion of the five elephant grass cultivars harvested in August and September is higher than that har- vested in October. The cellulose conversion for elephant grass cultivars harvested in August and September follows an order of Hybrid Pennisetum 〉 Sumu-2 〉 Huanan 〉 Guimu-1 〉 N51. This may be explained by the fact that lignification is gradually strengthened with time, inhibiting degradation of cellulose and hemicellulose. Moreover, cellulose conversions of Hybrid Pennisetum, Sumu-2 and Huanan harvested in August and September are higher based on hierarchical clustering results. 展开更多
关键词 Energy crop Elephant grass Dilute sulfuric acid pretreatment Enzymatic hydrolysis Glucose
下载PDF
Establishment and verification of a shrinking core model for dilute acid hydrolysis of lignocellulose
3
作者 Cunwen WANG Xiaoling DUAN +2 位作者 Weiguo WANG Zihao LI Yuanhang QIN 《Frontiers in Energy》 CSCD 2012年第4期413-419,共7页
The kinetics oflignocellulose hydrolysis under the conditions of high temperature and dilute acid (mass fraction 0.05%) was investigated in this paper. By studying the reducing sugar concentration versus reaction te... The kinetics oflignocellulose hydrolysis under the conditions of high temperature and dilute acid (mass fraction 0.05%) was investigated in this paper. By studying the reducing sugar concentration versus reaction tempera ture (170℃-220℃) and reaction time (150-1800 s) during the hydrolysis process of five kinds of crop straw (rice, wheat, cotton, rape and corn), the shrinking core model was established, and the differential equation of the model and its analytical solution were obtained. With a numerical calculation method, the kinetic equation was estimated, and the degradation of reducing sugar obeyed firstorder kinetics was obtained. The calculated results from the equations agreed well with the original experimental data. The calculation by the model showed that the reducing sugar concentration increases as the size of the particles decrease, and the uniform particles increase. 展开更多
关键词 LIGNOCELLULOSE dilute acid hydrolysis shrink-ing core model
原文传递
Exploring hemp seed hull biomass for an integrated C-5 biorefinery:Xylose and activated carbon
4
作者 Sreesha Malayil Luke Loughran +1 位作者 Frederik Mendoza Ulken Jagannadh Satyavolu 《Journal of Bioresources and Bioproducts》 EI CSCD 2024年第3期310-321,共12页
Large quantities of hemp hulls can be completely utilized for creation of value-added products (cost effective biofuels and biochemicals) through a biorefinery approach. A sustainable approach in making xylose, a low ... Large quantities of hemp hulls can be completely utilized for creation of value-added products (cost effective biofuels and biochemicals) through a biorefinery approach. A sustainable approach in making xylose, a low calorie sweetener and high surface area activated carbons (AC) for super capacitors, attracts interest. The AC when leveraged as a co-product from biorefinery process makes it more cost effective and, in this paper, we discuss the production of xylose and AC from hemp seed hull with methane sulphonic acid (MSA) hydrolysis. Xylose recovery with MSA hydrolysis was 25.15 g/L when compared to the traditional sulphuric acid (SA) hydrolysis of 19.96 g/L at the same acid loading of 1.8 %. The scanning electron microscope (SEM) images and Fourier transform infrared (FT-IR) spectra indicate partial delignification along with hemicellulose hydrolysis responsible for high xylose recovery. Post hydrolysis fibers were KOH activated and carbonized to make AC. The MSA hydrolyzed and KOH activated fiber produced pure, fluffier and finer particle AC with a drastic increase in surface area 1 452 m2/g when compared to SA hydrolyzed of 977 m2/g. These results indicate the potential of MSA in dilute acid hydrolysis of biomass for xylose recovery and production of high surface area activated carbon. From a production standpoint this can lead to increased use of sustainable low-cost agricultural biomass for making high surface area AC as components in supercapacitors. 展开更多
关键词 XYLOSE C-5 biorefinery Methane sulphonic acid DELIGNIFICATION Activated carbon Dilute acid hydrolysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部