It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limit...It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limits the applicability of existing methods in handling this complex scenario. To address this issue, we propose a model-free feature screening approach for ultra-high-dimensional multi-classification that can handle both categorical and continuous variables. Our proposed feature screening method utilizes the Maximal Information Coefficient to assess the predictive power of the variables. By satisfying certain regularity conditions, we have proven that our screening procedure possesses the sure screening property and ranking consistency properties. To validate the effectiveness of our approach, we conduct simulation studies and provide real data analysis examples to demonstrate its performance in finite samples. In summary, our proposed method offers a solution for effectively screening features in ultra-high-dimensional datasets with a mixture of categorical and continuous covariates.展开更多
The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model par...The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models).展开更多
In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified fro...In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
Taking the transport of total phosphor pollutants in the Beijing Miyun reservoir for example,we have obtained three dimensional distributing regularity of total phosphor pollutants by the calculation of the linear int...Taking the transport of total phosphor pollutants in the Beijing Miyun reservoir for example,we have obtained three dimensional distributing regularity of total phosphor pollutants by the calculation of the linear interpolation value of each point between horizontal layers. The credibility analysis in allusion to this method was carried out and the programming scheme for realizing this method was set forth.展开更多
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ...In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.展开更多
Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d...Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.展开更多
Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic i...Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic inversion accuracy.Regularization methods play a central role in solving the underdetermined inverse problem of seismic data reconstruction.In this paper,a novel regularization approach is proposed,the low dimensional manifold model(LDMM),for reconstructing the missing seismic data.Our work relies on the fact that seismic patches always occupy a low dimensional manifold.Specifically,we exploit the dimension of the seismic patches manifold as a regularization term in the reconstruction problem,and reconstruct the missing seismic data by enforcing low dimensionality on this manifold.The crucial procedure of the proposed method is to solve the dimension of the patches manifold.Toward this,we adopt an efficient dimensionality calculation method based on low-rank approximation,which provides a reliable safeguard to enforce the constraints in the reconstruction process.Numerical experiments performed on synthetic and field seismic data demonstrate that,compared with the curvelet-based sparsity-promoting L1-norm minimization method and the multichannel singular spectrum analysis method,the proposed method obtains state-of-the-art reconstruction results.展开更多
The use of three dimensional in vitro systems in cancer research is a promising path for developing effective anticancer therapies.The aim of this study was to engineer a functional 3-D in vitro model of normal and ca...The use of three dimensional in vitro systems in cancer research is a promising path for developing effective anticancer therapies.The aim of this study was to engineer a functional 3-D in vitro model of normal and cancerous cervical tissue.Normal epithelial and immortalized cervical epithelial carcinoma cell lines were used to construct 3-D artificial normal cervical and cervical cancerous tissues.De-epidermised dermis(DED) was used as a scaffold for both models.Morphological analyses were conducted by using hematoxylin and eosin staining and characteristics of the models were studied by analyzing the expression of different structural cytokeratins and differential protein marker MAX dimerisation protein 1(Mad1) using immunohistochemical technique.Haematoxylin and eosin staining results showed that normal cervical tissue had multi epithelial layers while cancerous cervical tissue showed dysplastic changes.Immunohistochemistry staining revealed that for normal cervix model cytokeratin 10 was expressed in the upper stratified layer of the epithelium while cytokeratin 5 was expressed mainly in the middle and basal layer.Cytokeratin 19 was weakly expressed in a few basal cells.Cervical cancer model showed cytokeratin 19 expression in different epithelial layers and weak or no expression for cytokeratin 5 and cytokeratin 10.Madl expression was detected in some suprabasal cells.The 3-D in vitro models showed stratified epithelial layers and expressed the same types and patterns of differentiation marker proteins as seen in corresponding in vivo tissue in either normal cervical or cervical cancerous tissue.These findings imply that they can serve as functional normal and cervical cancer models.展开更多
The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynam...The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources.展开更多
The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its ma...The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its main body is bestraddle in air,and has aerial intersections between its parts. This complex feature made cloverleaf junction quite different from buildings and terrain, therefore, it is difficult to express this kind of spatial objects in the same way as for buildings and terrain. In this paper,authors analyze spatial characteristics of cloverleaf junction, propose an all-constraint points TIN algorithm to partition cloverleaf junction road surface, and develop a method to visualize cloverleaf junction road surface using TIN. In order to manage cloverleaf junction data efficiently, the authors also analyzed the mechanism of 3DCM data management, extended BLOB type in relational database, and combined R-tree index to manage 3D spatial data. Based on this extension, an appropriate data展开更多
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ...In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.展开更多
Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa...Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of展开更多
A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mit...A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules ; LDL,HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.展开更多
Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and format...Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and formation mechanism of salinity fronts are analyzed and discussed. The research shows that the estuarine fronts mainly lie in the area from the Jiyu Islet to the Haimen Island, outside of Yuweizai to Hulishan cross-section, the near coast of Yuweizai and the south of the Songyu-Gulangyu Channel. The fronts in the former two regions are formed directly by plume, while the one near the coast of Yuweizai is a tidal intrusion front caused by flood current and the one at the south of the Songyu-Gulangyu Channel is the result of current shear transformation. Under normal circumstances, fresh water of the Jiulong River mainly influences the inside of the Xiamen Bay, and when it is in typhoon seasons, plume front can affect the Taiwan Strait and has an effect on the biogeochemical Drocesses in the strait.展开更多
-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model te...-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.展开更多
The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is pro...The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi-2D model for pure liquid zone and one-dimensional( 1D) discrete vapor cavity model for vaporous cavity zone. The quasi-2D model solves two-dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two-phase water flows caused by the rapid downstream valve closure in a reservoir-pipe-valve system.The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature,respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.展开更多
文摘It is common for datasets to contain both categorical and continuous variables. However, many feature screening methods designed for high-dimensional classification assume that the variables are continuous. This limits the applicability of existing methods in handling this complex scenario. To address this issue, we propose a model-free feature screening approach for ultra-high-dimensional multi-classification that can handle both categorical and continuous variables. Our proposed feature screening method utilizes the Maximal Information Coefficient to assess the predictive power of the variables. By satisfying certain regularity conditions, we have proven that our screening procedure possesses the sure screening property and ranking consistency properties. To validate the effectiveness of our approach, we conduct simulation studies and provide real data analysis examples to demonstrate its performance in finite samples. In summary, our proposed method offers a solution for effectively screening features in ultra-high-dimensional datasets with a mixture of categorical and continuous covariates.
文摘The objective of the work is to determine the influence of the PLA melting temperature during 3D printing on the dimensional accuracy of the model parts. Two modular drilling devices were also made using PLA model parts. The model parts were 3D printed using FDM technology and the ZMorph 2.0 hybrid 3D printer. The accuracy of 3D printing of the model part influences the realization of modular devices. In recent years, technology has evolved a lot, and the need to have the most efficient manufacturing equipment has increased. This is the reason for the development of 3D printers using FDM technology for plastic parts. The software used by these 3D printers used in FDM technology is very sophisticated, as they allow the manufacture of very precise 3D prototypes, identical to the designed 3D model, through modern additive manufacturing techniques. The quality and mechanical strength of the prototypes obtained using 3D printers is very good. The materials used by the 3D printers manufactured by FDM are cheap and accessible. These 3D printers are used to make three-dimensional objects (gears, flanges, bearings, covers, casings, mechanisms, figurines, interior and exterior design elements, architectural models, medical models).
文摘In ultra-high-dimensional data, it is common for the response variable to be multi-classified. Therefore, this paper proposes a model-free screening method for variables whose response variable is multi-classified from the point of view of introducing Jensen-Shannon divergence to measure the importance of covariates. The idea of the method is to calculate the Jensen-Shannon divergence between the conditional probability distribution of the covariates on a given response variable and the unconditional probability distribution of the covariates, and then use the probabilities of the response variables as weights to calculate the weighted Jensen-Shannon divergence, where a larger weighted Jensen-Shannon divergence means that the covariates are more important. Additionally, we also investigated an adapted version of the method, which is to measure the relationship between the covariates and the response variable using the weighted Jensen-Shannon divergence adjusted by the logarithmic factor of the number of categories when the number of categories in each covariate varies. Then, through both theoretical and simulation experiments, it was demonstrated that the proposed methods have sure screening and ranking consistency properties. Finally, the results from simulation and real-dataset experiments show that in feature screening, the proposed methods investigated are robust in performance and faster in computational speed compared with an existing method.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
文摘Taking the transport of total phosphor pollutants in the Beijing Miyun reservoir for example,we have obtained three dimensional distributing regularity of total phosphor pollutants by the calculation of the linear interpolation value of each point between horizontal layers. The credibility analysis in allusion to this method was carried out and the programming scheme for realizing this method was set forth.
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2009AA04Z162)National Nature Science Foundation of China(No. 60825302, No. 60934007, No. 61074061)+1 种基金Program of Shanghai Subject Chief Scientist,"Shu Guang" project supported by Shang-hai Municipal Education Commission and Shanghai Education Development FoundationKey Project of Shanghai Science and Technology Commission, China (No. 10JC1403400)
文摘In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
文摘Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.
基金supported by National Natural Science Foundation of China(Grant No.41874146 and No.42030103)Postgraduate Innovation Project of China University of Petroleum(East China)(No.YCX2021012)
文摘Seismic data reconstruction is an essential and yet fundamental step in seismic data processing workflow,which is of profound significance to improve migration imaging quality,multiple suppression effect,and seismic inversion accuracy.Regularization methods play a central role in solving the underdetermined inverse problem of seismic data reconstruction.In this paper,a novel regularization approach is proposed,the low dimensional manifold model(LDMM),for reconstructing the missing seismic data.Our work relies on the fact that seismic patches always occupy a low dimensional manifold.Specifically,we exploit the dimension of the seismic patches manifold as a regularization term in the reconstruction problem,and reconstruct the missing seismic data by enforcing low dimensionality on this manifold.The crucial procedure of the proposed method is to solve the dimension of the patches manifold.Toward this,we adopt an efficient dimensionality calculation method based on low-rank approximation,which provides a reliable safeguard to enforce the constraints in the reconstruction process.Numerical experiments performed on synthetic and field seismic data demonstrate that,compared with the curvelet-based sparsity-promoting L1-norm minimization method and the multichannel singular spectrum analysis method,the proposed method obtains state-of-the-art reconstruction results.
基金supported by the Middlesex University,particularly in the award of a Postgraduate Research Studentship that provided the necessary financial support for this research
文摘The use of three dimensional in vitro systems in cancer research is a promising path for developing effective anticancer therapies.The aim of this study was to engineer a functional 3-D in vitro model of normal and cancerous cervical tissue.Normal epithelial and immortalized cervical epithelial carcinoma cell lines were used to construct 3-D artificial normal cervical and cervical cancerous tissues.De-epidermised dermis(DED) was used as a scaffold for both models.Morphological analyses were conducted by using hematoxylin and eosin staining and characteristics of the models were studied by analyzing the expression of different structural cytokeratins and differential protein marker MAX dimerisation protein 1(Mad1) using immunohistochemical technique.Haematoxylin and eosin staining results showed that normal cervical tissue had multi epithelial layers while cancerous cervical tissue showed dysplastic changes.Immunohistochemistry staining revealed that for normal cervix model cytokeratin 10 was expressed in the upper stratified layer of the epithelium while cytokeratin 5 was expressed mainly in the middle and basal layer.Cytokeratin 19 was weakly expressed in a few basal cells.Cervical cancer model showed cytokeratin 19 expression in different epithelial layers and weak or no expression for cytokeratin 5 and cytokeratin 10.Madl expression was detected in some suprabasal cells.The 3-D in vitro models showed stratified epithelial layers and expressed the same types and patterns of differentiation marker proteins as seen in corresponding in vivo tissue in either normal cervical or cervical cancerous tissue.These findings imply that they can serve as functional normal and cervical cancer models.
基金the National Natural Science Foundation of China(40572165)
文摘The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources.
文摘The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its main body is bestraddle in air,and has aerial intersections between its parts. This complex feature made cloverleaf junction quite different from buildings and terrain, therefore, it is difficult to express this kind of spatial objects in the same way as for buildings and terrain. In this paper,authors analyze spatial characteristics of cloverleaf junction, propose an all-constraint points TIN algorithm to partition cloverleaf junction road surface, and develop a method to visualize cloverleaf junction road surface using TIN. In order to manage cloverleaf junction data efficiently, the authors also analyzed the mechanism of 3DCM data management, extended BLOB type in relational database, and combined R-tree index to manage 3D spatial data. Based on this extension, an appropriate data
基金supported by the Natural Science Foundation of China(No.41574127)the China Postdoctoral Science Foundation(No.2017M622608)the project for the independent exploration of graduate students at Central South University(No.2017zzts008)
文摘In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.
文摘Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of
文摘A new unsteady three-dimensional convective-diffusive mathematical model for the transportation of macromolecules and water across the arterial wall was proposed . After the formation of leaky junctions due to the mitosis of endothelial cell of the arterial wall, the macromolecular transport happens surrounding the leaky cells. The arterial wall was divided into four layers: the endothelial layer, the subendothelial intima, the internal elastic lamina and the media for the convenience of research. The time-dependent concentration growth,the effect of the shape of endothelial cell and the effect of physiological parameters were analyzed. The analytical solution of velocity field and pressure field of water flow across the arterial wall were obtained; and concentration distribution of three macromolecules ; LDL,HRP and Albumin, were calculated with numerical simulation method. The new theory predicts, the maximum and distribution areas of time dependent concentration with round shape endothelial cell are both larger than that with ellipse-shape endothelial cell. The model also predicts the concentration growth is much alike that of a two-dimensional model and it shows that the concentration reaches its peak at the leaky junction where atherosclerotic formation frequently occurs and falls down rapidly in a limited area beginning from its earlier time growth to the state when macromolecular transfer approaches steadily. These predictions of the new model are in agreement with the experimental observation for the growth and concentration distribution of LDL and Albumin.
文摘Applying the methods of on-site observation and dynamic model, the research on the fronts at the Jiulong Estuary has been carried out, during which spatial and temporal distribution, dynamic characteristics and formation mechanism of salinity fronts are analyzed and discussed. The research shows that the estuarine fronts mainly lie in the area from the Jiyu Islet to the Haimen Island, outside of Yuweizai to Hulishan cross-section, the near coast of Yuweizai and the south of the Songyu-Gulangyu Channel. The fronts in the former two regions are formed directly by plume, while the one near the coast of Yuweizai is a tidal intrusion front caused by flood current and the one at the south of the Songyu-Gulangyu Channel is the result of current shear transformation. Under normal circumstances, fresh water of the Jiulong River mainly influences the inside of the Xiamen Bay, and when it is in typhoon seasons, plume front can affect the Taiwan Strait and has an effect on the biogeochemical Drocesses in the strait.
文摘-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51208160)the Natural Science Foundation of Heilongjiang Province(Grant No.QC2012C056)
文摘The features of a quasi-two-dimensional( quasi-2D) model for simulating two-phase water hammer flows with vaporous cavity in a pipe are investigated. The quasi-2D model with discrete vaporous cavity in the pipe is proposed in this paper. This model uses the quasi-2D model for pure liquid zone and one-dimensional( 1D) discrete vapor cavity model for vaporous cavity zone. The quasi-2D model solves two-dimensional equations for both axial and radial velocities and 1D equations for both pressure head and discharge by the method of characteristics. The 1D discrete vapor cavity model is used to simulate the vaporous cavity occurred when the pressure in the local pipe is lower than the vapor pressure of the liquid. The proposed model is used to simulate two-phase water flows caused by the rapid downstream valve closure in a reservoir-pipe-valve system.The results obtained by the proposed model are compared with those by the corresponding 1D model and the experimental ones provided by the literature,respectively. The comparison shows that the maximum pressure heads simulated by the proposed model are more accurate than those by the corresponding 1D model.