期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Polynomial solutions of quasi-homogeneous partial differential equations
1
作者 LUO Xuebo ZHENG Zhujun Institute of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China Institute of Mathematics, Henan University, Kaifeng 475001, China 《Science China Mathematics》 SCIE 2001年第9期1148-1155,共8页
By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\... By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\}{\text{ }}_{\tau< 0} $ given by ( a1, …, an). Assume that either a1, …, an are positive rational numbers or $m{\text{ = }}\sum\limits_{j = 1}^n {\alpha _j \alpha _j } $ for some $\alpha {\text{ = }}\left( {\alpha _1 ,{\text{ }} \ldots {\text{ }},\alpha _n } \right) \in l _ + ^n $ Then the dimension of the space of polynomial solutions of the equationp[u] = 0 on ?n must be infinite 展开更多
关键词 quasi-homogeneous partial differential operator polynomial solution dimension of the space of solution method of analytic number theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部