Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element ana...Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.展开更多
Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress...Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress.Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results:When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis along superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum,(4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring,(3) in the acetabulum ,(4)along the pubic branch,but no stress transmitted to the ischium branch.Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.展开更多
A deformation monitoring network that covers part of North China area and takes the Beijing region as the center was measured for two times with high precision GPS in 1995 and 1996 respectively. The results from reme...A deformation monitoring network that covers part of North China area and takes the Beijing region as the center was measured for two times with high precision GPS in 1995 and 1996 respectively. The results from remeasurement indicate that present horizontal movement in the monitored area is characterized by relative motion among several main tectonic blocks. Considering the spatial distribution features obtained from geological survey and results on seismic wave and activity in the area, and stratified features of crustal medium in depth, a three dimensional finite element medium model is designed. And under the conditions of taking and not taking the action manner of the background stress field in the studied area into account, the relative motion between tectonic blocks is calculated and modeled. Based on the results from the analysis and calculations the dynamic mechanism for the present horizontal deformation in the area is discussed.展开更多
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Co...Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter.展开更多
An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a tr...An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low.展开更多
In the paper. a visco-elasto plastic constitutive model and a method for determining model parameters for soft clay are presented. In this model total strain of soft clay is assumed to be divided into three parts: ins...In the paper. a visco-elasto plastic constitutive model and a method for determining model parameters for soft clay are presented. In this model total strain of soft clay is assumed to be divided into three parts: instantaneous elastic, visco-elastic and visco-plastic. The characteristics of instantaneous and visco-elastic deformation of soft clay are simulated by Merchant's model, the plastic is by a model with two yield surfaces. And related constitutive equation is conducted. A number of stress-controlled triaxial tests are performed to calculated the model parameters. The visco-elasto-plastic model is used for analysis of the displacement of an embankment on soft ground by use of three-dimensional finite element method. The predicted settlements agree well with the measured data. It is indicated that the viscous characteristics should be taken into account in deformation analysis for soft clay.展开更多
A general finite element solution of the Schrodinger equation for a onedimensional problem is presented.The solver is applicable to both stationary and time-dependent cases with a general user-selected potential term....A general finite element solution of the Schrodinger equation for a onedimensional problem is presented.The solver is applicable to both stationary and time-dependent cases with a general user-selected potential term.Furthermore,it is possible to include external magnetic or electric fields,as well as spin-orbital and spinmagnetic interactions.We use analytically soluble problems to validate the solver.The predicted numerical auto-states are compared with the analytical ones,and selected mean values are used to validate the auto-functions.In order to analyze the performance of the time-dependent Schrodinger equation,a traveling wave package benchmark was reproduced.In addition,a problem involving the scattering of a wave packet over a double potential barrier shows the performance of the solver in cases of transmission and reflection of packages.Other general problems,related to periodic potentials,are treated with the same general solver and a Lagrange multiplier method to introduce periodic boundary conditions.Some simple cases of known periodic potential solutions are reported.展开更多
Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for pre...Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.展开更多
文摘Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.
文摘Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress.Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results:When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis along superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum,(4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring,(3) in the acetabulum ,(4)along the pubic branch,but no stress transmitted to the ischium branch.Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.
文摘A deformation monitoring network that covers part of North China area and takes the Beijing region as the center was measured for two times with high precision GPS in 1995 and 1996 respectively. The results from remeasurement indicate that present horizontal movement in the monitored area is characterized by relative motion among several main tectonic blocks. Considering the spatial distribution features obtained from geological survey and results on seismic wave and activity in the area, and stratified features of crustal medium in depth, a three dimensional finite element medium model is designed. And under the conditions of taking and not taking the action manner of the background stress field in the studied area into account, the relative motion between tectonic blocks is calculated and modeled. Based on the results from the analysis and calculations the dynamic mechanism for the present horizontal deformation in the area is discussed.
基金supported by the National Natural Science Foun-dation of China (10972228,11002150,and 91016025)the Basic Research Equipment Project of Chinese Academy of Sciences(YZ200930)
文摘Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and re- sistance to corrosion fatigue, cracking, etc. Compressive re- sidual stress and dent profile are important factors to eval- uate the effectiveness of shot peening process. In this pa- per, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of pro- cessing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were de- duced by dimensional analysis method. Secondly, the in- fluence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Fur- thermore, related empirical formulas were given for each di- mensionless parameter based on the simulation results. Fi- nally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this pa- per for analyzing the influence of each individual parameter.
基金Project(2010CB732101) supported by the National Basic Research Program of China Project(51079145) supported by the National Natural Science Foundation of China
文摘An empirical expression of cohesion (C) and friction angle (Ф) for layered rock was suggested. This expression was compared with a test result made by the former researchers. The constitutive relationship of a transversely isotropic medium and Mohr-Coulomb criterion in which C and Ф vary with directions were employed, and a relative 3D elasto-plastic FEM code was developed, in which the important thing was to adopt a search-trial method to find the orientation angle (p) of shear failure plane (or weakest shear plane) with respect to the major principal stress as well as the corresponding C and Ф Taking an underground opening as the calculation object, the numerical analyses were carried out by using the FEM code for two cases of transversely isotropic rock and isotropic rock, respectively, and the computation results were compared. The results show that when the rock is a transversely isotropic one, the distributions of displacements, plastic zones and stress contours in the surrounding rock will be non-axisymmetric along the tunnel's vertical axis, which is very different from that of isotropic rock. The stability of the tunnel in transversely isotropic rock is relatively low.
基金This work was financially supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education.P.R.China
文摘In the paper. a visco-elasto plastic constitutive model and a method for determining model parameters for soft clay are presented. In this model total strain of soft clay is assumed to be divided into three parts: instantaneous elastic, visco-elastic and visco-plastic. The characteristics of instantaneous and visco-elastic deformation of soft clay are simulated by Merchant's model, the plastic is by a model with two yield surfaces. And related constitutive equation is conducted. A number of stress-controlled triaxial tests are performed to calculated the model parameters. The visco-elasto-plastic model is used for analysis of the displacement of an embankment on soft ground by use of three-dimensional finite element method. The predicted settlements agree well with the measured data. It is indicated that the viscous characteristics should be taken into account in deformation analysis for soft clay.
文摘A general finite element solution of the Schrodinger equation for a onedimensional problem is presented.The solver is applicable to both stationary and time-dependent cases with a general user-selected potential term.Furthermore,it is possible to include external magnetic or electric fields,as well as spin-orbital and spinmagnetic interactions.We use analytically soluble problems to validate the solver.The predicted numerical auto-states are compared with the analytical ones,and selected mean values are used to validate the auto-functions.In order to analyze the performance of the time-dependent Schrodinger equation,a traveling wave package benchmark was reproduced.In addition,a problem involving the scattering of a wave packet over a double potential barrier shows the performance of the solver in cases of transmission and reflection of packages.Other general problems,related to periodic potentials,are treated with the same general solver and a Lagrange multiplier method to introduce periodic boundary conditions.Some simple cases of known periodic potential solutions are reported.
基金Funded by the National Natural Science Foundation of China(Nos.51772246,51272210,50902112,and U1737209)the Program for New Century Excellent Talents in University(NCET-13-0474)+1 种基金the Fundamental Research Funds for the Central Universities(3102017jg02001)the National Program for Support of Topnotch Young Professionals
文摘Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.