期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Dimension Vectors of Indecomposable Modules of Cluster-tilted Algebras and the Fomin-Zelevinsky Denominators Conjecture 被引量:3
1
作者 Shengfei GENG Liangang PENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第3期581-586,共6页
The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of ... The main result of this paper is that any two non-isomorphic indecomposable modules of a cluster-tilted algebra of finite representation type have different dimension vectors. As an application to cluster algebras of Types A, D, E, we give a proof of the Fomin Zelevinsky denominators conjecture for cluster variables, namely, different cluster variables have different denominators with respect to any given cluster. 展开更多
关键词 Dimension vector cluster tilting object cluster-tilted algebra denominator
原文传递
On the Koszul Modules of Exterior Algebras
2
作者 Jin Yun GUO Quan Hong WAN Qiu Xian WU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第11期1967-1984,共18页
We prove that the Koszul modules over an exterior algebra can be filtered by the cyclic Koszul modules. We also introduce the cyclic dimension vector as invariants for studying the Koszul modules over an exterior alge... We prove that the Koszul modules over an exterior algebra can be filtered by the cyclic Koszul modules. We also introduce the cyclic dimension vector as invariants for studying the Koszul modules over an exterior algebra. 展开更多
关键词 exterior algebra Koszul module cyclic dimension vector
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部