In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-neares...In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-nearest- neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.展开更多
This paper studies a spin ladder model which possesses frustrating interactions. By using both the bosonization and the density matrix renormalization group techniques, it shows that the intermediate columnar dimerize...This paper studies a spin ladder model which possesses frustrating interactions. By using both the bosonization and the density matrix renormalization group techniques, it shows that the intermediate columnar dimerized phase, which exists in a narrow parameter region of the so-called ~/1 - J2 model, vanishes if the interchain frustration is weak and anisotropic. Therefore, it concludes that the frustrating interaction indeed plays an important role in producing such a phase. As a complementary to our previous investigation, it reaches a more complete picture of the quantum phase transition in the frustrated spin ladder systems.展开更多
基金Supported by the Chinese National Science Foundation of China under Grant Nos.10874003,11074004,and 11047160Numerical Computation of This Work was Carried out on the Parallel Computer Cluster of Institute for Condensed Matter Physics(ICMP) at School of Physics,Peking University
文摘In this paper, we study the phase diagram of a frustrated spin ladder model by applying the bosonization technique and the density-matrix renormalization-group (DMRG) algorithm. Effect of the intra-ehain next-nearest- neighbor (NNN) super-exchange interaction is investigated in detail and the order parameters are calculated to detect the emergence of the dimerized phases. We find that the intra-chain NNN interaction plays a key role in inducing dimerized phases.
基金supported by the National Natural Science Foundation of China (Grant No. 10874003)Ministry of Science and Technology of China (Grant No. 2006CB921300)
文摘This paper studies a spin ladder model which possesses frustrating interactions. By using both the bosonization and the density matrix renormalization group techniques, it shows that the intermediate columnar dimerized phase, which exists in a narrow parameter region of the so-called ~/1 - J2 model, vanishes if the interchain frustration is weak and anisotropic. Therefore, it concludes that the frustrating interaction indeed plays an important role in producing such a phase. As a complementary to our previous investigation, it reaches a more complete picture of the quantum phase transition in the frustrated spin ladder systems.