Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(...Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.展开更多
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
We demonstrate a Kerr-lens mode-locked Yb:Lu YSiO_(5)(Yb:LYSO)laser with the pulse duration of 54 fs,corresponding to a spectral bandwidth of 25 nm centered at 1062 nm.To the best of our knowledge,this is the shortest...We demonstrate a Kerr-lens mode-locked Yb:Lu YSiO_(5)(Yb:LYSO)laser with the pulse duration of 54 fs,corresponding to a spectral bandwidth of 25 nm centered at 1062 nm.To the best of our knowledge,this is the shortest pulse duration obtained from Yb:LYSO laser.At the repetition rate of 378.3 MHz,an output power of 111.6 m W is obtained using an output coupler with 0.6%transmittance,which can maintain long-time stable mode-locking more than 13 h.展开更多
This paper reviews the different challenges that are encountered in the delivery of high power lasers as drivers for fusion energy.We will focus on diode-pumped solid-state lasers and we will highlight some of the mai...This paper reviews the different challenges that are encountered in the delivery of high power lasers as drivers for fusion energy.We will focus on diode-pumped solid-state lasers and we will highlight some of the main recent achievements when using ytterbium,cryogenic cooling and ceramic gain media.Apart from some existing fusion facilities and some military applications of diode-pumped solid-state lasers,we will show that diode-pumped solid-state lasers are scalable to inertial fusion energy(IFE)'s facility level and that the all-fiber laser scheme is very promising.展开更多
We report the compact diode-pumped continuous-wave (CW) Nd:LuV04 lasers operated at 916nm and 458nm for the first time. The maximum output power of 780mW at 916nm laser is obtained with a slope efficiency of 9.3%. ...We report the compact diode-pumped continuous-wave (CW) Nd:LuV04 lasers operated at 916nm and 458nm for the first time. The maximum output power of 780mW at 916nm laser is obtained with a slope efficiency of 9.3%. We generate 50roW of 458nm blue laser employing a type-Ⅰ critical phase-matched LBO crystal.展开更多
Numerical simulation is described which estimates the performance of thulium sensitized holmium doped CW fluoride fiber laser at 2.04 μm for both core and cladding pumped. This model takes into account the mechanis...Numerical simulation is described which estimates the performance of thulium sensitized holmium doped CW fluoride fiber laser at 2.04 μm for both core and cladding pumped. This model takes into account the mechanisms of cross relaxation and energy transfer to describe the laser operation. A subroutine program for calculating the absorption rate of cladding pumped scheme is included in the model. The losses of signal and pump light along the fiber have been taken into account. The test of cladding pumped scheme program shows good agreement with the experimental result. The experimental results of core pumping Tm Ho doped fiber laser in fluoride host are compared with the present model, and shows a good agreement with calculations. This model also provides data of the optimum parameters for the configuration of the efficient cladding pumped Tm Ho fluoride laser systems.展开更多
The 4-at.% Tm:Sc_2SiO_5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave(CW) laser o...The 4-at.% Tm:Sc_2SiO_5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave(CW) laser output of(100)-cut Tm:SSO with the dimensions of 3 mm×3 mm×3 mm under laser diode(LD)-pumping is realized. The full width at half maximum(FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW.展开更多
A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1....A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.展开更多
Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket...Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers,which finally turned megawatt lasers from dream into reality.Nowadays,the development of HELs has entered the age of electricity as well as the rocket engines.The properties of current electric rocket engines are highly consistent with HELs’goals,including electrical driving,effective heat dissipation,little medium consumption and extremely light weight and size,which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.As an exploratory attempt,a new configuration of diode pumped metastable rare gas laser was demonstrated,with the gain generator resembling an electric rocket-engine for improved power scaling ability.展开更多
Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,an...Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.展开更多
We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresp...We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.展开更多
We demonstrate a diode-pumped passively cw mode-locked Nd:CaGdAlO4 laser operating at 1079nm with a semiconductor saturable absorber mirror for the first time to the best of our knowledge. The threshold pump power of...We demonstrate a diode-pumped passively cw mode-locked Nd:CaGdAlO4 laser operating at 1079nm with a semiconductor saturable absorber mirror for the first time to the best of our knowledge. The threshold pump power of the laser is 180mW. A maximum average output power of 93mW is obtained under the pump power of 1.94 W. The pulse duration of the mode-locked pulses is 3.1ps and the repetition rate is 157MHz.展开更多
Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region...Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.展开更多
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金This work was supported by the National Natural Science Foundation of China(Nos.12122501,11975037,61631001,and 11921006)the National Grand Instrument Project(Nos.2019YFF01014400,2019YFF01014404)the Foundation of Science and Technology on Plasma Physics Laboratory(No.6142A04220108).
文摘Ultrashort and powerful laser interactions with a target generate intense wideband electromagnetic pulses(EMPs).In this study,we report EMPs generated by the interactions between petawatt(30 fs,1.4×10^(20) W/cm^(2))femtosecond(fs)lasers with metal flat,plastic flat,and plastic nanowire-array(NWA)targets.Detailed analyses are conducted on the EMPs in terms of their spatial distribution,time and frequency domains,radiation energy,and protection.The results indicate that EMPs from metal targets exhibit larger amplitudes at varying angles than those generated by other types of targets and are enhanced significantly for NWA targets.Using a plastic target holder and increasing the laser focal spot can significantly decrease the radiation energy of the EMPs.Moreover,the composite shielding materials indicate an effective shielding effect against EMPs.The simulation results show that the NWA targets exert a collimating effect on thermal electrons,which directly affects the distribution of EMPs.This study provides guidance for regulating EMPs by controlling the laser focal spot,target parameters,and target rod material and is beneficial for electromagnetic-shielding design.
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774277 and 62105253)the Science and Technology Program of Xi’an(Grant No.202005YK01)+2 种基金the Natural Science Basic Research Program of Shaanxi,China(Grant No.2019JCW-03)the Natural Science Foundation of Shannxi Province,China(Grant Nos.2022JQ-709 and 2023-JC-YB-485)the Fundamental Research Funds for the Central Universities(Grant No.XJS222206)。
文摘We demonstrate a Kerr-lens mode-locked Yb:Lu YSiO_(5)(Yb:LYSO)laser with the pulse duration of 54 fs,corresponding to a spectral bandwidth of 25 nm centered at 1062 nm.To the best of our knowledge,this is the shortest pulse duration obtained from Yb:LYSO laser.At the repetition rate of 378.3 MHz,an output power of 111.6 m W is obtained using an output coupler with 0.6%transmittance,which can maintain long-time stable mode-locking more than 13 h.
基金the support of the Funding Agencies in undertaking this work (EC FP7 project number 211737):EC,European CommissionMMT,Ministry of Education,Youth and Sports of the Czech RepublicSTFC,Science and Technology Facility Council of the United Kingdom
文摘This paper reviews the different challenges that are encountered in the delivery of high power lasers as drivers for fusion energy.We will focus on diode-pumped solid-state lasers and we will highlight some of the main recent achievements when using ytterbium,cryogenic cooling and ceramic gain media.Apart from some existing fusion facilities and some military applications of diode-pumped solid-state lasers,we will show that diode-pumped solid-state lasers are scalable to inertial fusion energy(IFE)'s facility level and that the all-fiber laser scheme is very promising.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60308001 and 60490280-1, the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJXC-SW-W14, the National Natural Science Foundation of China under Grant Nos 50572054 and 50590401, the Natural Science Foundation of Shandong Province under Grant No Y2004F01, and the National Basic Research Program of China under Grant No 2004CB619002.
文摘We report the compact diode-pumped continuous-wave (CW) Nd:LuV04 lasers operated at 916nm and 458nm for the first time. The maximum output power of 780mW at 916nm laser is obtained with a slope efficiency of 9.3%. We generate 50roW of 458nm blue laser employing a type-Ⅰ critical phase-matched LBO crystal.
文摘Numerical simulation is described which estimates the performance of thulium sensitized holmium doped CW fluoride fiber laser at 2.04 μm for both core and cladding pumped. This model takes into account the mechanisms of cross relaxation and energy transfer to describe the laser operation. A subroutine program for calculating the absorption rate of cladding pumped scheme is included in the model. The losses of signal and pump light along the fiber have been taken into account. The test of cladding pumped scheme program shows good agreement with the experimental result. The experimental results of core pumping Tm Ho doped fiber laser in fluoride host are compared with the present model, and shows a good agreement with calculations. This model also provides data of the optimum parameters for the configuration of the efficient cladding pumped Tm Ho fluoride laser systems.
基金supported by the Shanghai Municipal Engineering Research Center for Sapphire Crystals,China(Grant No.14DZ2252500)the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics,Chinese Academy of Sciences(Grant No.2008DP17301)+4 种基金the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China and the China Academy of Engineering Physics Joint Fund(Grant No.U1530152)the National Natural Science Foundation of China(Grant Nos.61475177 and 61621001)the Shanghai Municipal Natural Science Foundation,China(Grant No.13ZR1446100)the MDE Key Laboratory of Advanced Micro-Structured Materials
文摘The 4-at.% Tm:Sc_2SiO_5 (Tm:SSO) crystal is successfully obtained by the Czochralski method. The optical properties and thermal conductivity of the crystal are investigated. The broad continuous wave(CW) laser output of(100)-cut Tm:SSO with the dimensions of 3 mm×3 mm×3 mm under laser diode(LD)-pumping is realized. The full width at half maximum(FWHM) of the laser emitting reaches up to 21 nm. The laser threshold of Tm:SSO is measured to be 0.43 W. Efficient diode-pumped CW laser performance of Tm:SSO is demonstrated with a slope efficiency of 25.9% and maximum output power of 934 mW.
文摘A laser-diode-pumped Nd: YAG laser Q-switched Passively with a YAG colorcenter chip has been deveolped. The Q-switched pulse output has a duration of 25-70ns,an energy of about 7.9 μJ and a repetition frequency of 1.25-5.0kHz when the laser cavityparameters and pump power are changed. The Q-switched dynamics is analyzed with therate equation theorry. The theoretical and experimental results agree well.
文摘Since the first laser was invented,the pursuit of high-energy lasers(HELs)has always been enthusiastic.The first revolution of HELs was pushed by the fusion of laser and aerospace in the 1960s,with the chemical rocket engines giving fresh impetus to the birth of gas flow and chemical lasers,which finally turned megawatt lasers from dream into reality.Nowadays,the development of HELs has entered the age of electricity as well as the rocket engines.The properties of current electric rocket engines are highly consistent with HELs’goals,including electrical driving,effective heat dissipation,little medium consumption and extremely light weight and size,which inspired a second fusion of laser and aerospace and motivated the exploration for potential HELs.As an exploratory attempt,a new configuration of diode pumped metastable rare gas laser was demonstrated,with the gain generator resembling an electric rocket-engine for improved power scaling ability.
基金supports from National Natural Science Foundation of China (62274138,11904302)Natural Science Foundation of Fujian Province of China (2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China (2021H0011)Fujian Province Central Guidance Local Science and Technology Development Fund Project In 2022 (2022L3058)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone (3502ZCQXT2022005)。
文摘Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288+2 种基金the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085
文摘We demonstrate a cw and actively Q-switched Er:LuAO laser resonantly dual-end-pumped by 1532nm fibre- coupled laser diodes. A maximum cw output power of 1.9W at 1650.3nm is obtained at a pump power of 25.5 W, corresponding to a slope efficiency of 43.3 %. In the Q-switched regime, the maximum pulse energy of 3.51 mJ is reached at a pulse repetition rate of 100 Hz, a pulse duration of 90.5ns and a pump power of 25.5 W. At the repetition rate of 400 Hz, the output energy is 2.12m J, corresponding to a pulse duration of 125.4 ns.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922402the International Joint Research Program of the National Natural Science Foundation of China under Grant No 61210017
文摘We demonstrate a diode-pumped passively cw mode-locked Nd:CaGdAlO4 laser operating at 1079nm with a semiconductor saturable absorber mirror for the first time to the best of our knowledge. The threshold pump power of the laser is 180mW. A maximum average output power of 93mW is obtained under the pump power of 1.94 W. The pulse duration of the mode-locked pulses is 3.1ps and the repetition rate is 157MHz.
基金This work was supported by the National Natural Science Foundation of China(Nos.U21A20493,62104204,and 62234011)the National Key Research and Development Program of China(No.2017YFE0131500)the President’s Foundation of Xiamen University(No.20720220108).
文摘Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.