In this study,different loadings of x%Ni_(2)P/γ-Al_(2)O_(3)(x=6%,9%,12%,15%,18%)catalysts with aluminum oxide(Al_(2)O_(3))as the carrier,nickel chloride(NiCl2)as the nickel(Ni)source,and ammonium hypophosphite(NH_(4)...In this study,different loadings of x%Ni_(2)P/γ-Al_(2)O_(3)(x=6%,9%,12%,15%,18%)catalysts with aluminum oxide(Al_(2)O_(3))as the carrier,nickel chloride(NiCl2)as the nickel(Ni)source,and ammonium hypophosphite(NH_(4)H_(2)PO_(2))as the phosphorus(P)source were prepared by the equal volume impregnation method to investigate the effects of different loadings on the performance of the selective hydrogenation of diolefins and thiol etherification in LPG.The physicochemical properties of the catalysts were characterized by XRD,BET,SEM,TEM,H_(2)-TPR,and XPS,and the catalytic activity of the catalysts was evaluated in a fixed-bed microreactor.The results showed that a change in the loading affected the catalyst crystalline phase structure and size,specific surface area,P coverage,active phase dispersion,and catalytic activity.At 6%,9%,and 12%loadings the catalysts had an Ni phase but there was no obvious Ni_(2)P phase in the nickel phosphide;at 15%loading a single Ni_(2)P phase was obtained,and at 18%loading both Ni_(2)P and Ni1_(2)P_(5) phases appeared.There was a P enrichment on the catalyst surface,and the higher the loading the more P species were enriched on the surface,but some of the P was lost during the catalyst reduction process due to the production of phosphine(PH3)gas.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the largest Ni/Al ratio and the best dispersion.The Ni_(2)P active phase size was small at about 4.25 nm and Ni_(2)P was uniformly dispersed on the catalyst surface without agglomeration.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the best catalytic activity at a pressure of 2.0 MPa,a liquid hourly space velocity(LHSV)of 3.0 h-1,and a hydrogen to hydrocarbon ratio of 12.The 1,3-butadiene conversion was 97.45%and the methanethiol removal was 100%at a temperature of 140℃.展开更多
文摘In this study,different loadings of x%Ni_(2)P/γ-Al_(2)O_(3)(x=6%,9%,12%,15%,18%)catalysts with aluminum oxide(Al_(2)O_(3))as the carrier,nickel chloride(NiCl2)as the nickel(Ni)source,and ammonium hypophosphite(NH_(4)H_(2)PO_(2))as the phosphorus(P)source were prepared by the equal volume impregnation method to investigate the effects of different loadings on the performance of the selective hydrogenation of diolefins and thiol etherification in LPG.The physicochemical properties of the catalysts were characterized by XRD,BET,SEM,TEM,H_(2)-TPR,and XPS,and the catalytic activity of the catalysts was evaluated in a fixed-bed microreactor.The results showed that a change in the loading affected the catalyst crystalline phase structure and size,specific surface area,P coverage,active phase dispersion,and catalytic activity.At 6%,9%,and 12%loadings the catalysts had an Ni phase but there was no obvious Ni_(2)P phase in the nickel phosphide;at 15%loading a single Ni_(2)P phase was obtained,and at 18%loading both Ni_(2)P and Ni1_(2)P_(5) phases appeared.There was a P enrichment on the catalyst surface,and the higher the loading the more P species were enriched on the surface,but some of the P was lost during the catalyst reduction process due to the production of phosphine(PH3)gas.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the largest Ni/Al ratio and the best dispersion.The Ni_(2)P active phase size was small at about 4.25 nm and Ni_(2)P was uniformly dispersed on the catalyst surface without agglomeration.The 15%Ni_(2)P/γ-Al_(2)O_(3) catalyst had the best catalytic activity at a pressure of 2.0 MPa,a liquid hourly space velocity(LHSV)of 3.0 h-1,and a hydrogen to hydrocarbon ratio of 12.The 1,3-butadiene conversion was 97.45%and the methanethiol removal was 100%at a temperature of 140℃.