In the present study, in vitro ovule culture technique was used to obtain interspecific cross combination of Dioscorea rotundata ufenyi and Dioscorea bulbifera wild. Ten days after pollination, ovules were excised and...In the present study, in vitro ovule culture technique was used to obtain interspecific cross combination of Dioscorea rotundata ufenyi and Dioscorea bulbifera wild. Ten days after pollination, ovules were excised and cultured onto 1/2 strength Murashige and Skoog (MS) medium (Basal salt mixture + Vitamins) supplemented with 6% sucrose, 0.7% agar and plant growth hormones such as GA3, BAP, Picrolam and TDZ. Cultured ovules were transferred on 1/2 MS medium with 3% sucrose and 0.7% agar after three weeks. 40 days after pollination, germination was observed from 7 months cultured ovule between D. rotundata ufenyi x D. bulbifera wild. Hybridity of the regenerated plant was checked by flow cytometric method. A close relation was observed between the fluorescence intensity of the obtained progeny with one of the parents’ fluorescence. The observed progeny can be closely correlated with an apomictic tissue from an ovule parent of D. rotundata ufenyi. Plantlets derived from ovule culture were proliferated through in vitro shoot multiplication with hormonal concentration (0.5 mg/l BAP) supplemented with 1/2 strength MS medium. Obtained ovule culture derived in vitro plantlets were successfully hardened, acclimatized and transferred to the field, where they survived and grew normally. In plant breeding, interspecific crossing is very important technique, enabling the time needed to produce homozygous lines to be shortened as compared to the conventional plant breeding techniques.展开更多
Objective:To study the leaf epidermis of wild and micropropagated Dioscorea bulbifera Linn.(D.bulbifera)in order to document useful diagnostic features that may be employed for correct crude drug identification and to...Objective:To study the leaf epidermis of wild and micropropagated Dioscorea bulbifera Linn.(D.bulbifera)in order to document useful diagnostic features that may be employed for correct crude drug identification and to clear any taxonomic uncertainties in the micropropagated medicinal plant.Methods:Growth responses of micropropagated D.bulbifera were observed on Murashige Skoog medium supplemented with 6-benzylamino purine(1.0 mg/L)+α-naphthaleneacetic acid(0.2 mg/L)+cysteine(20 mg/L)using nodal segments as explants.Leaves of the wild and micropropagated plants were studied microscopically.Results:More than 80%shoot regeneration and formation of 10%-30%whitish-brown callus were observed within 3 weeks.The highest root proliferation was obtained from Murashige Skoog medium of 6-benzylamino purine(0.05 mg/L)andα-naphthaleneacetic acid(0.01 mg/L)with mean root length of(27.00±1.25)mm and elongated single shoot of mean length(38.00±11.09)mm.Leaf epidermal features that revealed similarities between the wild and micropropagated plants included amphistomatic condition,presence of mucilage,glandular unicellular trichome with multicellular head,polygonal cells with smooth walls,stomata type and shape.Slight variations included thick cuticular wall with closed stomata in wild plant compared to thin walled opened stomata in the in vitro plant.Opening of stomata accounted for larger average stomata sizes of(7.68±0.38)μm and(6.14±0.46)μm on the adaxial and abaxial surfaces,respectively of the micropropagated plant compared to the wild.Conclusions:The diagnostic features obtained in the study could serve as a basis for proper identification for quality control for standardization of the medicinal plant.展开更多
Objectives: Radix Polygoni Multiflori Praeparata (RPMP) and Dioscorea Bulbifera Rhizomes (DBR) are used in Chinese herbal medicine and have been frequently reported for adverse reactions on liver. In this research, we...Objectives: Radix Polygoni Multiflori Praeparata (RPMP) and Dioscorea Bulbifera Rhizomes (DBR) are used in Chinese herbal medicine and have been frequently reported for adverse reactions on liver. In this research, we aimed to evaluate in vivo effects of RPMP and DBR on rat cytochrome P450 enzymes (CYP1A2, CYP2E1 and CYP3A2) with their respective substrates as probes. Methods: Rats were orally administered RPMP, DBR and RPMP/DBR combination at 12, 10 and (12 + 10) g/kg, respectively, or saline as a control, once daily for 7 days. Thereafter, a cocktail containing 10 mg/kg caffeine, 20 mg/kg chlorzoxazone and 10 mg/kg dapsone was tail vein injected to rats. At defined time points, plasma drug concentrations were simultaneously evaluated by HPLC. Pharmacokinetic parameters simulated by DAS software were used to assess RPMP and/or DBR effects on cytochrome P450 enzymes activity. ANOVA and Dunnett’s test were used for data analysis. Results: Caffeine metabolism was enhanced in RPMP animals and reduced after pretreatment with DBR, but no effect was observed in RPMP/DBR combination group. Chlorzoxazone and dapsone metabolism was enhanced in both RPMP and DBR groups and consequently in combination group. The data suggested that RPMP independently induces rat CYP1A2, CYP2E1 and CYP3A2 activity, while DBR independently inhibits activity of rat CYP1A2 and induces that of CYP2E1 and CYP3A2. RPMP/DBR combination showed no significant benefit compared with the two drugs alone and even showed a neutralized effect in CYP1A2 activity. Conclusions: Caution is needed when RPMP and/or DBR are co-administered with drugs metabolized by human CYP1A2, CYP2E1 and CYP3A4.展开更多
[Objective] This study was to explore the effect of purple yam on the nutritional and physiological functions of rats.[Method] Forty SD rats were randomly divided into four groups with ten rats in each group which wer...[Objective] This study was to explore the effect of purple yam on the nutritional and physiological functions of rats.[Method] Forty SD rats were randomly divided into four groups with ten rats in each group which were reared with artificial semisynthetic feed added with 10% steamed yam powder.The four groups,the casein(CK) group which was used as the control,the purple yam(PY) group,the Tiegun yam(TY) group and common Huai yam(HY) group,were supplied with feed of equal content of energy,protein and fat.The rats were pair-fed for 56 days to observe changes of relevant nutritional and physiological indices.[Result] There were no significant differences of body weight,food conversion rate and organ indices between rats in PY group and CK group.Mean corpuscular hemoglobin in PY group was significantly lower than that in CK group;hemoglobin showed no significant difference with that in CK group;eosnophils was lower than that in CK group.Low density lipoprotein-cholesterol,total cholesterol and atherogenic index in PY group were lower than that in the other three groups;anti-atherogenic index was the highest among the four groups,while showing no significant difference;triglyceride content was lower than that in CK group.Among the antioxidant indices,the activity of catalase and superoxide dismutase were higher than that in CK group,while malondialdehyde content was lower than that in CK group.[Conclusion] Purple yam showed the trend of reducing the content of blood glucose,total cholesterol,low density lipoprotein-cholesterol,triglyceride,malondialdehyde,and raising the activity of glutathione peroxidase,superoxide dismutase and catalase,thus having certain antioxidative function.展开更多
Diterpenoid lactones(DLs),a group of furan-containing compounds found in Dioscorea bulbifera L.(DB),have been reported to be associated with hepatotoxicity.Different hepatotoxicities of these DLs have been observed in...Diterpenoid lactones(DLs),a group of furan-containing compounds found in Dioscorea bulbifera L.(DB),have been reported to be associated with hepatotoxicity.Different hepatotoxicities of these DLs have been observed in vitro,but reasonable explanations for the differential hepatotoxicity have not been provided.Herein,the present study aimed to confirm the potential factors that contribute to varied hepatotoxicity of four representative DLs(diosbulbins A,B,C,F).In vitro toxic effects were evaluated in various cell models and the interactions between DLs and CYP3 A4 at the atomic level were simulated by molecular docking.Results showed that DLs exhibited varied cytotoxicities,and that CYP3 A4 played a modulatory role in this process.Moreover,structural variation may cause different affinities between DLs and CYP3 A4,which was positively correlated with the observation of cytotoxicity.In addition,analysis of the glutathione(GSH)conjugates indicated that reactive intermediates were formed by metabolic oxidation that occurred on the furan moiety of DLs,whereas,GSH consumption analysis reflected the consistency between the reactive metabolites and the hepatotoxicity.Collectively,our findings illustrated that the metabolic regulation played a crucial role in generating the varied hepatotoxicity of DLs.展开更多
文摘In the present study, in vitro ovule culture technique was used to obtain interspecific cross combination of Dioscorea rotundata ufenyi and Dioscorea bulbifera wild. Ten days after pollination, ovules were excised and cultured onto 1/2 strength Murashige and Skoog (MS) medium (Basal salt mixture + Vitamins) supplemented with 6% sucrose, 0.7% agar and plant growth hormones such as GA3, BAP, Picrolam and TDZ. Cultured ovules were transferred on 1/2 MS medium with 3% sucrose and 0.7% agar after three weeks. 40 days after pollination, germination was observed from 7 months cultured ovule between D. rotundata ufenyi x D. bulbifera wild. Hybridity of the regenerated plant was checked by flow cytometric method. A close relation was observed between the fluorescence intensity of the obtained progeny with one of the parents’ fluorescence. The observed progeny can be closely correlated with an apomictic tissue from an ovule parent of D. rotundata ufenyi. Plantlets derived from ovule culture were proliferated through in vitro shoot multiplication with hormonal concentration (0.5 mg/l BAP) supplemented with 1/2 strength MS medium. Obtained ovule culture derived in vitro plantlets were successfully hardened, acclimatized and transferred to the field, where they survived and grew normally. In plant breeding, interspecific crossing is very important technique, enabling the time needed to produce homozygous lines to be shortened as compared to the conventional plant breeding techniques.
基金Supported by University of Ibadan Senate Research Grant(Grant No.SRG/FP/2010/4)
文摘Objective:To study the leaf epidermis of wild and micropropagated Dioscorea bulbifera Linn.(D.bulbifera)in order to document useful diagnostic features that may be employed for correct crude drug identification and to clear any taxonomic uncertainties in the micropropagated medicinal plant.Methods:Growth responses of micropropagated D.bulbifera were observed on Murashige Skoog medium supplemented with 6-benzylamino purine(1.0 mg/L)+α-naphthaleneacetic acid(0.2 mg/L)+cysteine(20 mg/L)using nodal segments as explants.Leaves of the wild and micropropagated plants were studied microscopically.Results:More than 80%shoot regeneration and formation of 10%-30%whitish-brown callus were observed within 3 weeks.The highest root proliferation was obtained from Murashige Skoog medium of 6-benzylamino purine(0.05 mg/L)andα-naphthaleneacetic acid(0.01 mg/L)with mean root length of(27.00±1.25)mm and elongated single shoot of mean length(38.00±11.09)mm.Leaf epidermal features that revealed similarities between the wild and micropropagated plants included amphistomatic condition,presence of mucilage,glandular unicellular trichome with multicellular head,polygonal cells with smooth walls,stomata type and shape.Slight variations included thick cuticular wall with closed stomata in wild plant compared to thin walled opened stomata in the in vitro plant.Opening of stomata accounted for larger average stomata sizes of(7.68±0.38)μm and(6.14±0.46)μm on the adaxial and abaxial surfaces,respectively of the micropropagated plant compared to the wild.Conclusions:The diagnostic features obtained in the study could serve as a basis for proper identification for quality control for standardization of the medicinal plant.
文摘Objectives: Radix Polygoni Multiflori Praeparata (RPMP) and Dioscorea Bulbifera Rhizomes (DBR) are used in Chinese herbal medicine and have been frequently reported for adverse reactions on liver. In this research, we aimed to evaluate in vivo effects of RPMP and DBR on rat cytochrome P450 enzymes (CYP1A2, CYP2E1 and CYP3A2) with their respective substrates as probes. Methods: Rats were orally administered RPMP, DBR and RPMP/DBR combination at 12, 10 and (12 + 10) g/kg, respectively, or saline as a control, once daily for 7 days. Thereafter, a cocktail containing 10 mg/kg caffeine, 20 mg/kg chlorzoxazone and 10 mg/kg dapsone was tail vein injected to rats. At defined time points, plasma drug concentrations were simultaneously evaluated by HPLC. Pharmacokinetic parameters simulated by DAS software were used to assess RPMP and/or DBR effects on cytochrome P450 enzymes activity. ANOVA and Dunnett’s test were used for data analysis. Results: Caffeine metabolism was enhanced in RPMP animals and reduced after pretreatment with DBR, but no effect was observed in RPMP/DBR combination group. Chlorzoxazone and dapsone metabolism was enhanced in both RPMP and DBR groups and consequently in combination group. The data suggested that RPMP independently induces rat CYP1A2, CYP2E1 and CYP3A2 activity, while DBR independently inhibits activity of rat CYP1A2 and induces that of CYP2E1 and CYP3A2. RPMP/DBR combination showed no significant benefit compared with the two drugs alone and even showed a neutralized effect in CYP1A2 activity. Conclusions: Caution is needed when RPMP and/or DBR are co-administered with drugs metabolized by human CYP1A2, CYP2E1 and CYP3A4.
基金Natural Science Foundation of Guangxi Academy of Agricultural Sciences(No.2003014 and 2009014)The Project ofSpecial Funds for the Employment of Outstanding Experts in Guangxi
基金Supported by the Special Fund for Construction of Scientific and Technological Innovation Ability of BAAFS(KJCX201101010-22)~~
文摘[Objective] This study was to explore the effect of purple yam on the nutritional and physiological functions of rats.[Method] Forty SD rats were randomly divided into four groups with ten rats in each group which were reared with artificial semisynthetic feed added with 10% steamed yam powder.The four groups,the casein(CK) group which was used as the control,the purple yam(PY) group,the Tiegun yam(TY) group and common Huai yam(HY) group,were supplied with feed of equal content of energy,protein and fat.The rats were pair-fed for 56 days to observe changes of relevant nutritional and physiological indices.[Result] There were no significant differences of body weight,food conversion rate and organ indices between rats in PY group and CK group.Mean corpuscular hemoglobin in PY group was significantly lower than that in CK group;hemoglobin showed no significant difference with that in CK group;eosnophils was lower than that in CK group.Low density lipoprotein-cholesterol,total cholesterol and atherogenic index in PY group were lower than that in the other three groups;anti-atherogenic index was the highest among the four groups,while showing no significant difference;triglyceride content was lower than that in CK group.Among the antioxidant indices,the activity of catalase and superoxide dismutase were higher than that in CK group,while malondialdehyde content was lower than that in CK group.[Conclusion] Purple yam showed the trend of reducing the content of blood glucose,total cholesterol,low density lipoprotein-cholesterol,triglyceride,malondialdehyde,and raising the activity of glutathione peroxidase,superoxide dismutase and catalase,thus having certain antioxidative function.
基金supported by the National Natural Science Foundation of China(No.81773993)
文摘Diterpenoid lactones(DLs),a group of furan-containing compounds found in Dioscorea bulbifera L.(DB),have been reported to be associated with hepatotoxicity.Different hepatotoxicities of these DLs have been observed in vitro,but reasonable explanations for the differential hepatotoxicity have not been provided.Herein,the present study aimed to confirm the potential factors that contribute to varied hepatotoxicity of four representative DLs(diosbulbins A,B,C,F).In vitro toxic effects were evaluated in various cell models and the interactions between DLs and CYP3 A4 at the atomic level were simulated by molecular docking.Results showed that DLs exhibited varied cytotoxicities,and that CYP3 A4 played a modulatory role in this process.Moreover,structural variation may cause different affinities between DLs and CYP3 A4,which was positively correlated with the observation of cytotoxicity.In addition,analysis of the glutathione(GSH)conjugates indicated that reactive intermediates were formed by metabolic oxidation that occurred on the furan moiety of DLs,whereas,GSH consumption analysis reflected the consistency between the reactive metabolites and the hepatotoxicity.Collectively,our findings illustrated that the metabolic regulation played a crucial role in generating the varied hepatotoxicity of DLs.