期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Science Letters:EHPred: an SVM-based method for epoxide hydrolases recognition and classification 被引量:1
1
作者 贾佳 杨亮 张子张 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第1期1-6,共6页
A two-layer method based on support vector machines (SVMs) has been developed to distinguish epoxide hydrolases (EHs) from other enzymes and to classify its subfamilies using its primary protein sequences. SVM classif... A two-layer method based on support vector machines (SVMs) has been developed to distinguish epoxide hydrolases (EHs) from other enzymes and to classify its subfamilies using its primary protein sequences. SVM classifiers were built using three different feature vectors extracted from the primary sequence of EHs: the amino acid composition (AAC), the dipeptide composition (DPC), and the pseudo-amino acid composition (PAAC). Validated by 5-fold cross tests, the first layer SVM clas- sifier can differentiate EHs and non-EHs with an accuracy of 94.2% and has a Matthew’s correlation coefficient (MCC) of 0.84. Using 2-fold cross validation, PAAC-based second layer SVM can further classify EH subfamilies with an overall accuracy of 90.7% and MCC of 0.87 as compared to AAC (80.0%) and DPC (84.9%). A program called EHPred has also been developed to assist readers to recognize EHs and to classify their subfamilies using primary protein sequences with greater accuracy. 展开更多
关键词 Epoxide hydrolases (EHs) Amino acid composition (AAC) dipeptide composition (DPC) Pseudo-amino acid composition (PAAC) Support vector machines (SVM)
下载PDF
Prediction of Protein Structural Classes Using the Theory of Increment of Diversity and Support Vector Machine 被引量:1
2
作者 WANG Fangping WANG Zhijian +1 位作者 LI Hong YANG Keli 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期260-264,共5页
Based on the concept of the pseudo amino acid composition (PseAAC), protein structural classes are predicted by using an approach of increment of diversity combined with support vector machine (ID-SVM), in which t... Based on the concept of the pseudo amino acid composition (PseAAC), protein structural classes are predicted by using an approach of increment of diversity combined with support vector machine (ID-SVM), in which the dipeptide amino acid composition of proteins is used as the source of diversity. Jackknife test shows that total prediction accuracy is 96.6% and higher than that given by other approaches. Besides, the specificity (Sp) and the Matthew's correlation coefficient (MCC) are also calculated for each protein structural class, the Sp is more than 88%, the MCC is higher than 92%, and the higher MCC and Sp imply that it is credible to use ID-SVM model predicting protein structural class. The results indicate that: 1 the choice of the source of diversity is reasonable, 2 the predictive performance of IDSVM is excellent, and3 the amino acid sequences of proteins contain information of protein structural classes. 展开更多
关键词 dipeptide amino acid composition increment of diversity support vector machines protein structure classes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部