Objective: To study the effects of recombinant expression vector containing human breast cancer DF3 promotor and diphtheria toxin A fragment on human breast cancer cells. Methods: Constructing recombinant expression v...Objective: To study the effects of recombinant expression vector containing human breast cancer DF3 promotor and diphtheria toxin A fragment on human breast cancer cells. Methods: Constructing recombinant expression vector PGL3-DF3-DTA and transfecting it into human breast cancer cells of DF3 positive and negative. By means of RT-PCR to measure the expression of DTA in human breast cancer cells. MTT color-imetry was used to examine the effect of PGL3-DF3-DTA on growth of human breast cancer cells. By experiment on nude mice to observe the killing effect of PGL3-DF3-DTA on human breast cancer cells. Results: Recombinant expression vector PGL3-DF3-DTA was highly expressed in human breast cancer cell line of DF3 positive, and it could kill the human breast cancer cells not only in vitro but also in vivo. Conclusion: Recombinant expression vector PGL3-DF3-DTA could produce specific killing effect on human breast cancer cell line of DF3 positive.展开更多
The genetic modification of the live attenuated Mycobacterium bovis BCG to deliver a protective Corynebacterium diphtheriae antigen in vivo could be a safer and less costly alternative to the new and more expensive DT...The genetic modification of the live attenuated Mycobacterium bovis BCG to deliver a protective Corynebacterium diphtheriae antigen in vivo could be a safer and less costly alternative to the new and more expensive DTP vaccines available today, in particular to third world-countries. The stability of expression of heterologous antigens in BCG, however, is a major challenge to the use of live recombinant bacteria in vaccine development and appears to be dependent to a certain extent, on a genetic compatibility between the expression cassette within the plasmid construct and the mycobacterium host. In the quest for the best recombinant BCG transformant to express the dtb gene of C. diphtheriae we generated two new rBCG strains by transforming the Moreau substrain of BCG with the mycobacterial expression vectors pUS973 and pUS977, each one carrying a different promoter to drive the expression of the target antigen. After transformation recombinant BCG clones were selected on Middlebrook 7H10 kanamycin Agar plates, expanded in Middlebrook 7H9 kanamycin Broth and analyzed by agarose gel electrophoresis and immunoblotting. rBCGs transformed with the construct carrying the weak PAN promoter from M. paratuberculosis stably expressed the dtb gene. Conversely, rBCGs transformed with the construct carrying the strong mycobacterium hsp60 promoter were unstable and consequently unfit for the expression of the C. diphtheriae gene.展开更多
OBJECTIVE: To test whether the diphtheria toxin A (DT-A) chain coding sequence linked to murine immunoglobulin Kappa light chain (IgKappa) promoter and enhancer have selective cytocidal effects on IgKappa producing ce...OBJECTIVE: To test whether the diphtheria toxin A (DT-A) chain coding sequence linked to murine immunoglobulin Kappa light chain (IgKappa) promoter and enhancer have selective cytocidal effects on IgKappa producing cells. METHODS: The diphtheria toxin A gene or beta galactosidase (beta-gal) gene were linked to a murine IgKappa promoter and enhancer to construct pcDNA3IgKappaDTA or pcDNA3IgKappaLacZ plasmids. These plasmids were transfected into IgKappa producing or non-producing cells by the liposome coated DNA method. Expression of beta-gal activity and effects on cell growth of transfected cells were assessed. RESULTS: The beta-gal gene, under the control of cytomegalovirus (CMV) promoter, can express in all cell lines. Expression of beta-gal under the control of the IgKappa promoter was detected only in the IgKappa producing cell line, CA46. Expression of beta-gal was greatly suppressed when cotransfected with pcDNA3IgKappaDTA in CA46 cells.Cell growth of CA46 cells transfected with pcDNA3IgKappaDTA plasmid was significantly inhibited compared with CA46 cells transfected with pcDNA3IgKappaLacZ. CONCLUSION: Selective killing of IgKappa producing cells can be attained by introducing the diphtheria toxin A gene under the control of IgKappa promoter and enhancer.展开更多
基金Health Department Scientific Research Foundation of Hubei province (No. NX200501)
文摘Objective: To study the effects of recombinant expression vector containing human breast cancer DF3 promotor and diphtheria toxin A fragment on human breast cancer cells. Methods: Constructing recombinant expression vector PGL3-DF3-DTA and transfecting it into human breast cancer cells of DF3 positive and negative. By means of RT-PCR to measure the expression of DTA in human breast cancer cells. MTT color-imetry was used to examine the effect of PGL3-DF3-DTA on growth of human breast cancer cells. By experiment on nude mice to observe the killing effect of PGL3-DF3-DTA on human breast cancer cells. Results: Recombinant expression vector PGL3-DF3-DTA was highly expressed in human breast cancer cell line of DF3 positive, and it could kill the human breast cancer cells not only in vitro but also in vivo. Conclusion: Recombinant expression vector PGL3-DF3-DTA could produce specific killing effect on human breast cancer cell line of DF3 positive.
基金Research supported by Bio-Manguinhos/FIOCRUZ,PAPES II/FIOCRUZ,FAPERJ,CNPq,CAPES,Programa de Núcleo de Excelencia(PRONEX/MCT/CNPq).
文摘The genetic modification of the live attenuated Mycobacterium bovis BCG to deliver a protective Corynebacterium diphtheriae antigen in vivo could be a safer and less costly alternative to the new and more expensive DTP vaccines available today, in particular to third world-countries. The stability of expression of heterologous antigens in BCG, however, is a major challenge to the use of live recombinant bacteria in vaccine development and appears to be dependent to a certain extent, on a genetic compatibility between the expression cassette within the plasmid construct and the mycobacterium host. In the quest for the best recombinant BCG transformant to express the dtb gene of C. diphtheriae we generated two new rBCG strains by transforming the Moreau substrain of BCG with the mycobacterial expression vectors pUS973 and pUS977, each one carrying a different promoter to drive the expression of the target antigen. After transformation recombinant BCG clones were selected on Middlebrook 7H10 kanamycin Agar plates, expanded in Middlebrook 7H9 kanamycin Broth and analyzed by agarose gel electrophoresis and immunoblotting. rBCGs transformed with the construct carrying the weak PAN promoter from M. paratuberculosis stably expressed the dtb gene. Conversely, rBCGs transformed with the construct carrying the strong mycobacterium hsp60 promoter were unstable and consequently unfit for the expression of the C. diphtheriae gene.
文摘OBJECTIVE: To test whether the diphtheria toxin A (DT-A) chain coding sequence linked to murine immunoglobulin Kappa light chain (IgKappa) promoter and enhancer have selective cytocidal effects on IgKappa producing cells. METHODS: The diphtheria toxin A gene or beta galactosidase (beta-gal) gene were linked to a murine IgKappa promoter and enhancer to construct pcDNA3IgKappaDTA or pcDNA3IgKappaLacZ plasmids. These plasmids were transfected into IgKappa producing or non-producing cells by the liposome coated DNA method. Expression of beta-gal activity and effects on cell growth of transfected cells were assessed. RESULTS: The beta-gal gene, under the control of cytomegalovirus (CMV) promoter, can express in all cell lines. Expression of beta-gal under the control of the IgKappa promoter was detected only in the IgKappa producing cell line, CA46. Expression of beta-gal was greatly suppressed when cotransfected with pcDNA3IgKappaDTA in CA46 cells.Cell growth of CA46 cells transfected with pcDNA3IgKappaDTA plasmid was significantly inhibited compared with CA46 cells transfected with pcDNA3IgKappaLacZ. CONCLUSION: Selective killing of IgKappa producing cells can be attained by introducing the diphtheria toxin A gene under the control of IgKappa promoter and enhancer.