Electromagnetic scattering from inhomogeneous three-dimensional( 3D) bi-anisotropic scatterers is formulated in terms of the volume integral equation( VIE) method. Based on the volume equivalence principle,the VIE is ...Electromagnetic scattering from inhomogeneous three-dimensional( 3D) bi-anisotropic scatterers is formulated in terms of the volume integral equation( VIE) method. Based on the volume equivalence principle,the VIE is represented in terms of a pair of coupled bi-anisotropic polarized volume electric and magnetic flux densities. The VIE is solved using the method of moments( MoM) combined with tetrahedral mesh. Then the fast dipole method( FDM) based on the equivalent dipole method( EDM) is extended to analyze the scattering of bi-anisotropic media by solving the VIE. Finally,some numerical results are given to demonstrate the accuracy of the developed method for the scattering analysis of the bi-anisotropic media.展开更多
Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Theref...Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.展开更多
The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this ...The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.展开更多
We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanos...We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanosized tip shape,the tip open angle and the illumination angle are revealed. In combination with the previous results, we establish a complete model to understand the tip-nanoparticle near-field coupling mechanism.展开更多
The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric ...The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric field distribution in ordinary textbooks only give a special direction, This paper introduces in detail the formula of the electric dipole in the space of an arbitrary point excitation electric field, and use computer sottware to simulate the distribution pattern of electric dipole, and gives some typical figures for reference.展开更多
We study odd–even high-order harmonic generation(HHG) from oriented asymmetric molecules He H2+numerically and analytically. The variational method is used to improve the analytical description of the ground-state...We study odd–even high-order harmonic generation(HHG) from oriented asymmetric molecules He H2+numerically and analytically. The variational method is used to improve the analytical description of the ground-state wave function for the asymmetric system, with which the ground-state-continuum-state transition dipole is evaluated. The comparison between the odd–even HHG spectra and the improved dipoles allows us to identify and clarify the complex generation mechanism of odd–even harmonics from asymmetric molecules, providing deep insights into the relation between the odd–even HHG and the asymmetric molecular orbital.展开更多
We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminat...We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.展开更多
Lead oxide(Pb O), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in Pb O, the excited sta...Lead oxide(Pb O), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in Pb O, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of Pb O have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin–orbital coupling on the electronic structure of the Pb O molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit(Pb(~3P_g) + O(~3P_g)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm^(-1), for instance, X^1Σ~+, 1~3Σ~+,and 1~3Σ^-, and their spin–orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X^1Σ~+and 1~3Σ~+are consistent with the previous experimental results. The transition dipole moments from 1~1Π, 2~1Π, and 2~Σ to X^1Σ~+and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 1~1Π, 2~1Π, and 2~1Σ~+ states are evaluated.展开更多
基金Supported by the National Natural Science Foundation of China(61071019)the Joint Funding Project of the Aerospace Science Foundation Office of China(2008ZA52006)
文摘Electromagnetic scattering from inhomogeneous three-dimensional( 3D) bi-anisotropic scatterers is formulated in terms of the volume integral equation( VIE) method. Based on the volume equivalence principle,the VIE is represented in terms of a pair of coupled bi-anisotropic polarized volume electric and magnetic flux densities. The VIE is solved using the method of moments( MoM) combined with tetrahedral mesh. Then the fast dipole method( FDM) based on the equivalent dipole method( EDM) is extended to analyze the scattering of bi-anisotropic media by solving the VIE. Finally,some numerical results are given to demonstrate the accuracy of the developed method for the scattering analysis of the bi-anisotropic media.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2014CB541602)the National Natural Science Foundation of China(Grant Nos.51677008 and 51707028)the Fundamental Research Funds of Central Universities,China(Grant No.106112015CDJXY150003)
文摘Low-field nuclear magnetic resonance magnet(2 MHz) is required for rock core analysis. However, due to its low field strength, it is hard to achieve a high uniform B0 field only by using the passive shimming. Therefore, active shimming is necessarily used to further improve uniformity for Halbach magnet. In this work, an equivalent magnetic dipole method is presented for designing shim coils. The minimization of the coil power dissipation is considered as an optimal object to minimize coil heating effect, and the deviation from the target field is selected as a penalty function term. The lsqnonlin optimization toolbox of MATLAB is used to solve the optimization problem. Eight shim coils are obtained in accordance with the contour of the stream function. We simulate each shim coil by ANSYS Maxwell software to verify the validity of the designed coils. Measurement results of the field distribution of these coils are consistent with those of the target fields.The uniformity of the B0 field is improved from 114.2 ppm to 26.9 ppm after using these shim coils.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51677008,51377182,51707028,and 11647098)the Fundamental Research Funds of the Central Universities,China(Grant No.106112017CDJQJ158834)the State Key Development Program for Basic Research of China(Grant No.2014CB541602)
文摘The conventional magnetic resonance imaging(MRI)equipment cannot measure large volume samples nondestructively in the engineering site for its heavy weight and closed structure.In order to realize the mobile MRI,this study focuses on the design of gradient coil of unilateral magnet.The unilateral MRI system is used to image the local area above the magnet.The current density distribution of the gradient coil cannot be used as a series of superconducting nuclear magnetic resonance gradient coils,because the region of interest(ROI)and the wiring area of the unilateral magnet are both cylindrical side arc surfaces.Therefore,the equivalent magnetic dipole method is used to design the gradient coil,and the algorithm is improved for the special case of the wiring area and the ROI,so the X and Y gradient coils are designed.Finally,a flexible printed circuit board(PCB)is used to fabricate the gradient coil,and the magnetic field distribution of the ROI is measured by a Gauss meter,and the measured results match with the simulation results.The gradient linearities of x and y coils are 2.82%and 3.56%,respectively,less than 5%of the commercial gradient coil requirement.
基金Supported by the Start-Up Grant of Zhejiang University of Technology,the Zhejiang Provincial Key Laboratory of Information Processing,Communication and Networking,the Zhejiang University,and the National Natural Science Foundation of China under Grant No 61605171
文摘We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanosized tip shape,the tip open angle and the illumination angle are revealed. In combination with the previous results, we establish a complete model to understand the tip-nanoparticle near-field coupling mechanism.
文摘The paper analyze the polarization of study dielectric that produced field by dipole, medium field plays an important role in electromagnetic wave radiation. The electric field expression for electric dipole electric field distribution in ordinary textbooks only give a special direction, This paper introduces in detail the formula of the electric dipole in the space of an arbitrary point excitation electric field, and use computer sottware to simulate the distribution pattern of electric dipole, and gives some typical figures for reference.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274090)the Fundamental Research Funds for the Central Universities,China(Grant No.SNNU.GK201403002)
文摘We study odd–even high-order harmonic generation(HHG) from oriented asymmetric molecules He H2+numerically and analytically. The variational method is used to improve the analytical description of the ground-state wave function for the asymmetric system, with which the ground-state-continuum-state transition dipole is evaluated. The comparison between the odd–even HHG spectra and the improved dipoles allows us to identify and clarify the complex generation mechanism of odd–even harmonics from asymmetric molecules, providing deep insights into the relation between the odd–even HHG and the asymmetric molecular orbital.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LGF20C050001)the National Nature Science Foundation of China(No.61805213)。
文摘We use the method of discrete dipole approximation with surface interaction to construct a model in which a plurality of nanoparticles is arranged on the surface of BK7 glass. Nanoparticles are in air medium illuminated by evanescent wave generated from total internal reflection. The effects of the wavelength, the polarization of the incident wave, the number of nanoparticles and the spacing of multiple nanoparticles on the field enhancement and extinction efficiency are calculated by our model. Our work could pave the way to improve the field enhancement of multiple nanoparticles systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404180 and 11574114)the Natural Science Foundation of Heilongjiang Province,China(Grant No.A2015010)+1 种基金the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province,China(Grant No.UNPYSCT-2015095)the Natural Science Foundation of Jilin Province,China(Grant No.20150101003JC)
文摘Lead oxide(Pb O), which plays the key roles in a range of research fields, has received a great deal of attention. Owing to the large density of electronic states and heavy atom Pb including in Pb O, the excited states of the molecule have not been well studied. In this work, high level multireference configuration interaction calculations on the low-lying states of Pb O have been carried out by utilizing the relativistic effective core potential. The effects of the core-valence correlation correction, the Davidson modification, and the spin–orbital coupling on the electronic structure of the Pb O molecule are estimated. The potential energy curves of 18 Λ-S states correlated to the lowest dissociation limit(Pb(~3P_g) + O(~3P_g)) are reported. The calculated spectroscopic parameters of the electronic states below 30000 cm^(-1), for instance, X^1Σ~+, 1~3Σ~+,and 1~3Σ^-, and their spin–orbit coupling interaction, are compared with the experimental results, and good agreements are derived. The dipole moments of the 18 Λ-S states are computed with the configuration interaction method, and the calculated dipole moments of X^1Σ~+and 1~3Σ~+are consistent with the previous experimental results. The transition dipole moments from 1~1Π, 2~1Π, and 2~Σ to X^1Σ~+and other singlet excited states are estimated. The radiative lifetime of several low-lying vibrational levels of 1~1Π, 2~1Π, and 2~1Σ~+ states are evaluated.