The pygmy and giant dipole resonances in proton-rich nuclei 17,1817,18Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bard...The pygmy and giant dipole resonances in proton-rich nuclei 17,1817,18Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bardeen–Cooper–Schrieffer approximation to take into account the pairing correlation. The quasiparticle random phase approximation (QRPA) method is used to explore the properties of excited dipole states. In the calculations the SLy5 Skyrme interaction is employed. In addition to the giant dipole resonances, pygmy dipole resonances (PDR) are found to be located in the energy region below 10 MeV in both ^17,18Ne. The strength and transition density show that the low-lying states are typical PDR states. However, analyzing the QRPA amplitudes of proton and neutron 2 quasiparticle (2qp) configurations for a given low-lying state in ^17,18Ne, we find that the PDR state is less collective, more like a single 2qp excitation.展开更多
The isovector giant dipole resonances(IVGDR)in proton-rich Ar and Ca isotopes have been systematic-ally investigated using the resonant continuum Hartree-F ock+BCS(HF+BCS)and quasiparticle random phase ap-proximation(...The isovector giant dipole resonances(IVGDR)in proton-rich Ar and Ca isotopes have been systematic-ally investigated using the resonant continuum Hartree-F ock+BCS(HF+BCS)and quasiparticle random phase ap-proximation(QRPA)methods.The Skyrme SLy5 and density-dependent contact pairing interactions are employed in the calculations.In addition to the giant dipole resonances at energy around 18 MeV,pygmy dipole resonances(PDR)are found to be located in the energy region below 12 MeV.The calculated energy-weighted moments of PDR in nuclei close to the proton drip-line exhaust about 4%of the TRK sum rule.The strengths decrease with in-creasing mass number in each isotopic chain.The transition densities of the PDR states show that motions of pro-tons and neutrons are in phase in the interiors of nuclei,while the protons give the main contribution at the surface.By analyzing the QRPA amplitudes of proton and neutron 2-quasiparticle configurations for a given low-lying state,we find that only a few proton configurations give significant contributions.They contribute about 95%to the total QRPA amplitudes,which indicates that the collectivity of PDR states is not strong in proton-rich nuclei in the present study.展开更多
The pygmy dipole resonance(PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy ...The pygmy dipole resonance(PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm^(-1). However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei^(70-78)Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section.展开更多
The isovector giant dipole resonance in Ca isotopes is investigated in the framework of the fully consistent relativistic random phase approximation. The calculations are performed in an effective Lagrangian with a pa...The isovector giant dipole resonance in Ca isotopes is investigated in the framework of the fully consistent relativistic random phase approximation. The calculations are performed in an effective Lagrangian with a parameter set , which was proposed for satisfactorily describing nuclear ground state properties. It is found that a soft isovector dipole mode for Ca isotopes near drip lines exists at energy around . The soft dipole states are mainly due to the excitation of the weakly bound and pure neutron (proton) states near Fermi surface as well as the correlation of isoscalar and isovector operators. For nuclei with the extreme value of , the contributions of isoscalar mesons in the isovector mode play a non-negligible role.展开更多
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq...Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.展开更多
This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in ...This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.展开更多
Using a Langevin equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei 194 pb, 200Pb, 206Pb, and 200 Os. It is demonstrated that with increas...Using a Langevin equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei 194 pb, 200Pb, 206Pb, and 200 Os. It is demonstrated that with increasing the isospin asymmetry of these fissioning nuclei the sensitivity of the emitted γ multiplicity to the nuclear viscosity coefficient is decreased significantly. For 200Os nuc/eus, this γ-ray emission is no longer sensitive to the magnitude of the viscosity coefficient. In addition, the effect of the isospin asymmetry on the γ rays as a probe of nuclear dissipation is reduced with increasing angular momentum. These results suggest that to obtain a more accurate information of the viscosity coemfficient by the measurement of pre-scission GDR γ-ray multiplicity it is better to choose those compound systems with small isospin asymmetry and low spin.展开更多
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of n...Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.展开更多
A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence(SGC) is p...A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence(SGC) is present, the remarkable contrast optical nonreciprocity of light transmission and reflection can be generated at each induced photonic bandgap in the optical lattice with a velocity of a few m/s. However, when the SGC effect is absent, the optical nonreciprocity becomes weak or even vanishing due to the strong absorption. It is found that the optical nonreciprocity is related to the asymmetric Doppler effect in transmission and reflection, meanwhile the degree and position of optical nonreciprocity can be tuned by the SGC effect and the Rabi frequency of the trigger field.展开更多
We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles(resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and...We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles(resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions.These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates.To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action,we introduce the factor of spectral photomodification.Based on calculation of changes in thermodynamic,mechanical,and optical characteristics of the domains,the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps,an average particle size,and the degree of polydispersity.Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains.The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields.展开更多
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits...We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.展开更多
In this study,experiments were performed at bremsstrahlung end-point energies of 10-23 MeV with the beam from the MT-25 microtron using theγ-activation technique.The experimental values of relative yields were compar...In this study,experiments were performed at bremsstrahlung end-point energies of 10-23 MeV with the beam from the MT-25 microtron using theγ-activation technique.The experimental values of relative yields were compared with theoretical results obtained on the basis of TALYS with the standard parameters and the combined model of photonucleon reactions.Including isospin splitting in the combined model of photonucleon reactions allows describing experimental data on reactions with proton escape in the energy range from 10 to 23 MeV.Therefore,taking into account isospin splitting is necessary for a correct description of the decay of the giant dipole resonance.展开更多
Relative yields were measured in the 40−130 MeV bremsstrahlung induced reactions of ^(59)Co.The experiments were performed with the beam from the electron linear accelerator LINAC-200 using the activation and off-line...Relative yields were measured in the 40−130 MeV bremsstrahlung induced reactions of ^(59)Co.The experiments were performed with the beam from the electron linear accelerator LINAC-200 using the activation and off-lineγ-ray spectrometric techniques.The bremsstrahlung photon flux was calculated with the Geant4 program.The cross sections were calculated by using the computer code TALYS-1.96 with different models and were found to be in good agreement with the experimental data.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11375022,11575060,11505058 and 11435014
文摘The pygmy and giant dipole resonances in proton-rich nuclei 17,1817,18Ne are investigated with a fully self-consistent approach. The properties of ground states are calculated in the Skyrme Hartree–Fock with the Bardeen–Cooper–Schrieffer approximation to take into account the pairing correlation. The quasiparticle random phase approximation (QRPA) method is used to explore the properties of excited dipole states. In the calculations the SLy5 Skyrme interaction is employed. In addition to the giant dipole resonances, pygmy dipole resonances (PDR) are found to be located in the energy region below 10 MeV in both ^17,18Ne. The strength and transition density show that the low-lying states are typical PDR states. However, analyzing the QRPA amplitudes of proton and neutron 2 quasiparticle (2qp) configurations for a given low-lying state in ^17,18Ne, we find that the PDR state is less collective, more like a single 2qp excitation.
基金partly Supported by the National Natural Science Foundation of China(11975096,11775014)the Fundamental Research Funds for the Central Universities(2020NTST06).
文摘The isovector giant dipole resonances(IVGDR)in proton-rich Ar and Ca isotopes have been systematic-ally investigated using the resonant continuum Hartree-F ock+BCS(HF+BCS)and quasiparticle random phase ap-proximation(QRPA)methods.The Skyrme SLy5 and density-dependent contact pairing interactions are employed in the calculations.In addition to the giant dipole resonances at energy around 18 MeV,pygmy dipole resonances(PDR)are found to be located in the energy region below 12 MeV.The calculated energy-weighted moments of PDR in nuclei close to the proton drip-line exhaust about 4%of the TRK sum rule.The strengths decrease with in-creasing mass number in each isotopic chain.The transition densities of the PDR states show that motions of pro-tons and neutrons are in phase in the interiors of nuclei,while the protons give the main contribution at the surface.By analyzing the QRPA amplitudes of proton and neutron 2-quasiparticle configurations for a given low-lying state,we find that only a few proton configurations give significant contributions.They contribute about 95%to the total QRPA amplitudes,which indicates that the collectivity of PDR states is not strong in proton-rich nuclei in the present study.
基金Supported by National Science Foundation of China
文摘The pygmy dipole resonance(PDR) of nickel isotopes is studied using the deformed random phase approximation method. The isoscalar character of the pygmy resonance is confirmed, and the correlation between the pygmy resonance and neutron skin thickness is discussed. Our investigation shows a linear correlation between PDR integral cross section and neutron skin thickness when the excess neutrons lie in pf orbits, with a correlation rate of about 0.27 fm^(-1). However, in more neutron-rich nickel isotopes, the growth of the pygmy dipole resonance is stagnant. Although the neutron skin thickness increases, the whole skin is not active. There is an inertial part in the nuclei^(70-78)Ni which does not participate in the pygmy resonance actively and as a result, contributes little to the photo-absorption cross section.
文摘The isovector giant dipole resonance in Ca isotopes is investigated in the framework of the fully consistent relativistic random phase approximation. The calculations are performed in an effective Lagrangian with a parameter set , which was proposed for satisfactorily describing nuclear ground state properties. It is found that a soft isovector dipole mode for Ca isotopes near drip lines exists at energy around . The soft dipole states are mainly due to the excitation of the weakly bound and pure neutron (proton) states near Fermi surface as well as the correlation of isoscalar and isovector operators. For nuclei with the extreme value of , the contributions of isoscalar mesons in the isovector mode play a non-negligible role.
基金supported by National Natural Science Foundation of China(Nos.11505040,11261140326,11405038 and 51577043)China Postdoctoral Science Foundation(Nos.2016M591518,2015M570283)HIT.NSRIF under Grant No.2017008
文摘Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.
基金supported by the National Natural Science Foundation of China(Nos.11905018 and 11875328).
文摘This work is an attempt to improve the Bayesian neural network (BNN) for studying photoneutron yield cross sections as a function of the charge number Z, mass number A, and incident energy ε. The BNN was improved in terms of three aspects:numerical parameters, input layer, and network structure. First, by minimizing the deviations between the predictions and data, the numerical parameters, including the hidden layer number, hidden node number, and activation function, were selected. It was found that the BNN with three hidden layers, 10 hidden nodes, and sigmoid activation function provided the smallest deviations. Second, based on known knowledge,such as the isospin dependence and shape effect, the optimal ground-state properties were selected as input neurons. Third, the Lorentzian function was applied to map the hidden nodes to the output cross sections, and the empirical formula of the Lorentzian parameters was applied to link some of the input nodes to the output cross sections. It was found that the last two aspects improved the predictions and avoided overfitting, especially for the axially deformed nucleus.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405007
文摘Using a Langevin equation coupled with a statistical model, we calculate pre-scission giant dipole resonance (GDR) γ-ray multiplicity of nuclei 194 pb, 200Pb, 206Pb, and 200 Os. It is demonstrated that with increasing the isospin asymmetry of these fissioning nuclei the sensitivity of the emitted γ multiplicity to the nuclear viscosity coefficient is decreased significantly. For 200Os nuc/eus, this γ-ray emission is no longer sensitive to the magnitude of the viscosity coefficient. In addition, the effect of the isospin asymmetry on the γ rays as a probe of nuclear dissipation is reduced with increasing angular momentum. These results suggest that to obtain a more accurate information of the viscosity coemfficient by the measurement of pre-scission GDR γ-ray multiplicity it is better to choose those compound systems with small isospin asymmetry and low spin.
基金partially supported by the National Natural Science Foundations of China(Grant Nos.11374039 and 11174042)the National Basic Research Program of China(Grant Nos.2011CB922204 and 2013CB632805)
文摘Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11347137,11247201,and 11247005)the Twelfth Five-year Program for Science and Technology of Education Department of Jilin Province,China(Grant No.20150215)
文摘A four-level double-ladder cold atoms system with spontaneously generated coherence trapped in a moving optical lattice is explored to achieve optical nonreciprocity. When spontaneously generated coherence(SGC) is present, the remarkable contrast optical nonreciprocity of light transmission and reflection can be generated at each induced photonic bandgap in the optical lattice with a velocity of a few m/s. However, when the SGC effect is absent, the optical nonreciprocity becomes weak or even vanishing due to the strong absorption. It is found that the optical nonreciprocity is related to the asymmetric Doppler effect in transmission and reflection, meanwhile the degree and position of optical nonreciprocity can be tuned by the SGC effect and the Rabi frequency of the trigger field.
基金performed within the state contract of the RF Ministry of Education and Science for Siberian Federal University for scientific research in 2016(Reference number 1792)SB RAS Program No II.2P(0358-2015-0010)
文摘We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles(resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions.These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates.To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action,we introduce the factor of spectral photomodification.Based on calculation of changes in thermodynamic,mechanical,and optical characteristics of the domains,the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps,an average particle size,and the degree of polydispersity.Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains.The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 11704416) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2017JJ3408).
文摘We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.
文摘In this study,experiments were performed at bremsstrahlung end-point energies of 10-23 MeV with the beam from the MT-25 microtron using theγ-activation technique.The experimental values of relative yields were compared with theoretical results obtained on the basis of TALYS with the standard parameters and the combined model of photonucleon reactions.Including isospin splitting in the combined model of photonucleon reactions allows describing experimental data on reactions with proton escape in the energy range from 10 to 23 MeV.Therefore,taking into account isospin splitting is necessary for a correct description of the decay of the giant dipole resonance.
基金Supported in part by the Ministry of Science and Higher Education of the Russian Federation (075-15-2021-1360)by the project of the National Center for Physics and Mathematics (NCPM)No.6“Nuclear and Radiation Physics,”direction 6.5.1。
文摘Relative yields were measured in the 40−130 MeV bremsstrahlung induced reactions of ^(59)Co.The experiments were performed with the beam from the electron linear accelerator LINAC-200 using the activation and off-lineγ-ray spectrometric techniques.The bremsstrahlung photon flux was calculated with the Geant4 program.The cross sections were calculated by using the computer code TALYS-1.96 with different models and were found to be in good agreement with the experimental data.