In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua...In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form ...We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.展开更多
We propose a new exactly solvable potential which is Formed by modified Kratzer potential plus a new ring-shaped potential η cot^2 θ/r^2 The solutions of the Dirac equation with equal scalar and vector ring-shaped m...We propose a new exactly solvable potential which is Formed by modified Kratzer potential plus a new ring-shaped potential η cot^2 θ/r^2 The solutions of the Dirac equation with equal scalar and vector ring-shaped modified Kratzer potential are found by using the Nikiforov-Uvarov method. The nonrelativistic limit of the energy spectrum has been discussed.展开更多
A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equati...A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.展开更多
Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov...Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.展开更多
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into th...The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.展开更多
This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solution...This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.展开更多
Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term,we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential in...Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term,we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential including the spin-orbit coupling term by using the Nikiforov-Uvarov method and supersymmetric quantum mechanics approach.The complex eigenvalue equation and the total normalized wave functions expressed in terms of Jacobi polynomial with arbitrary spin-orbit coupling quantum number k are presented under the condition of pseudospin symmetry.The eigenvalue equations for both methods reproduce the same result to affirm the mathematical accuracy of analytical calculations.The numerical solutions obtained for different adjustable parameters produce degeneracies for some quantum number.展开更多
The pseudospin symmetry in the Makarov potential is investigated systematically by solving the Diracequation.The analytical solution for the Makarov potential with pseudospin symmetry is obtained by Nikiforov-Uvarov(N...The pseudospin symmetry in the Makarov potential is investigated systematically by solving the Diracequation.The analytical solution for the Makarov potential with pseudospin symmetry is obtained by Nikiforov-Uvarov(N-U)method.The eigenfunctions and eigenenergies are presented with equal mixture of vector and scalar potentials inopposite signs,for which is exact.展开更多
An intriguing quasi-relativistic wave equation, which is useful between the range of applications of the Schr<span style="white-space:nowrap;">ö</span>dinger and the Klein-Gordon equatio...An intriguing quasi-relativistic wave equation, which is useful between the range of applications of the Schr<span style="white-space:nowrap;">ö</span>dinger and the Klein-Gordon equations, is discussed. This equation allows for a quantum description of a constant number of spin-0 particles moving at quasi-relativistic energies. It is shown how to obtain a Pauli-like version of this equation from the Dirac equation. This Pauli-like quasi-relativistic wave equation allows for a quantum description of a constant number of spin-1/2 particles moving at quasi-relativistic energies and interacting with an external electromagnetic field. In addition, it was found an excellent agreement between the energies of the electron in heavy Hydrogen-like atoms obtained using the Dirac equation, and the energies calculated using a perturbation approach based on the quasi-relativistic wave equation. Finally, it is argued that the notable quasi-relativistic wave equation discussed in this work provides interesting pedagogical opportunities for a fresh approach to the introduction to relativistic effects in introductory quantum mechanics courses.展开更多
The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical ex...The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical expressions of the matrix dements for both position and momentum operators are obtained.展开更多
Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponen...Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtained explicitly.展开更多
Approximate analytical solutions of the Dirac equation in the case of pseudospin and spin symmetry limits are inves- tigated under the Deng-Fan potential by applying the asymptotic iteration method for the arbitrary q...Approximate analytical solutions of the Dirac equation in the case of pseudospin and spin symmetry limits are inves- tigated under the Deng-Fan potential by applying the asymptotic iteration method for the arbitrary quantum numbers n and ~~. Some of the numerical results are also represented in both pseudospin symmetry and spin symmetry limits.展开更多
An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic P ¨oschl–Teller potential combined with trigonometric Scarf II non-central potential is studied ...An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic P ¨oschl–Teller potential combined with trigonometric Scarf II non-central potential is studied analytically. It is assumed that the scalar potential equals the vector potential in order to obtain analytical solutions. Both radial and angular parts of the Dirac equation are solved using the Nikiforov–Uvarov method. A relativistic energy spectrum and the relation between quantum numbers can be obtained using this method. Several quantum wave functions corresponding to several states are also presented in terms of the Jacobi Polynomials.展开更多
Using the Nikiforov-Uvarov (NU) method, pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthen potentials with the Yukawa-type tensor potential are obtained for an arbitrary ...Using the Nikiforov-Uvarov (NU) method, pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthen potentials with the Yukawa-type tensor potential are obtained for an arbitrary spin-orbit coupling quantum number K. We deduce the energy eigenvalue equations and corresponding upper- and lower-spinor wave functions in both the pseudospin and spin symmetry cases. Numerical results of the energy eigenvalue equations and the upper- and lower-spinor wave functions are presented to show the effects of the external potential and particle mass parameters as well as pseudospin and spin symmetric constants on the bound-state energies and wave functions in the absence and presence of the tensor interaction.展开更多
Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S 2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduce...Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S 2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state^a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.展开更多
The aim of this paper is to solve the radial parts of a Dirac equation in Kerr-Newman (KN) geometry. The potential is replaced by a collection of step functions, then the reflection and transmission coefficients as ...The aim of this paper is to solve the radial parts of a Dirac equation in Kerr-Newman (KN) geometry. The potential is replaced by a collection of step functions, then the reflection and transmission coefficients as well as the solution of the wave equation are obtained by using a quantum mechanical method. The result shows that the waves with different values of mass will be scatted off very differently.展开更多
The approximate analytical solutions of the Dirac equation with the Poeschl-Teller potential is presented for arbitrary spin-orbit quantum number κ within the framework of the spin symmetry concept. The energy eigenv...The approximate analytical solutions of the Dirac equation with the Poeschl-Teller potential is presented for arbitrary spin-orbit quantum number κ within the framework of the spin symmetry concept. The energy eigenvalues and the corresponding two Dirac spinors are obtained approximately in closed forms. The limiting cases of the energy eigenvalues and the two Dirac spinors are briefly discussed.展开更多
The Dirac equation is solved for Killingbeck potential. Under spin symmetry limit, the energy eigenvalues and the corresponding wave functions are obtained by using wave function ansatz method.
文摘In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
文摘We investigate the spin and pseudospin symmetries of the Dirac equation under modified deformed Hylleraas potential via a Pekeris approximation and the Nikiforov-Uvarov technique. A tensor interaction of Coulomb form is considered and its degeneracy-removing role is discussed in detail. The solutions are reported for an arbitrary quantum number in a compact form and useful numerical data are included.
文摘We propose a new exactly solvable potential which is Formed by modified Kratzer potential plus a new ring-shaped potential η cot^2 θ/r^2 The solutions of the Dirac equation with equal scalar and vector ring-shaped modified Kratzer potential are found by using the Nikiforov-Uvarov method. The nonrelativistic limit of the energy spectrum has been discussed.
基金Supported by the National Natural Science Foundation of China under Grant No. 60806047the Basic Research of Chongqing Education Committee under Grant No. KJ060813
文摘A new ring-shaped non-harmonic oscillator potential is proposed. The precise bound solution of Dirac equation with the potential is gained when the scalar potential is equal to the vector potential. The angular equation and radial equation are obtained through the variable separation method. The results indicate that the normalized angle wave function can be expressed with the generalized associated-Legendre polynomial, and the normalized radial wave function can be expressed with confluent hypergeometric function. And then the precise energy spectrum equations are obtained. The ground state and several low excited states of the system are solved. And those results are compared with the non-relativistic effect energy level in Phys. Lett. A 340 (2005) 94. The positive energy states of system are discussed and the conclusions are made properly.
文摘Exact analytical solutions of the Dirac equation are reported for the Poschl-Teller double-ring-shaped Coulomb potential.The radial,polar,and azimuthal parts of the Dirac equation are solved using the Nikiforov-Uvarov method,and the exact bound-state energy eigenvalues and corresponding two-component spinor wavefunctions are reported.
基金supported by the Higher Education Project(Grant No.698/UN27.11/PN/2015)
文摘The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate(CX2013A003)the NNSF(11171351,11361078)SRFDP(20120162110021)of China
文摘This article is concerned with the nonlinear Dirac equations-iδtψ=ich ∑k=1^3 αkδkψ-mc^2βψ+Rψ(x,ψ) in R^3.Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.
文摘Employing the Pekeris-type approximation to deal with the pseudo-centrifugal term,we analytically study the pseudospin symmetry of a Dirac nucleon subjected to equal scalar and vector modified Rosen-Morse potential including the spin-orbit coupling term by using the Nikiforov-Uvarov method and supersymmetric quantum mechanics approach.The complex eigenvalue equation and the total normalized wave functions expressed in terms of Jacobi polynomial with arbitrary spin-orbit coupling quantum number k are presented under the condition of pseudospin symmetry.The eigenvalue equations for both methods reproduce the same result to affirm the mathematical accuracy of analytical calculations.The numerical solutions obtained for different adjustable parameters produce degeneracies for some quantum number.
基金Supported by National Natural Science Foundation of China under Grant Nos.1047500 and 10675001Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0558Program for Excellent Talents in Anhui Province University Education Committee Foundation of Anhui Province under Grant No.2006KJ259B
文摘The pseudospin symmetry in the Makarov potential is investigated systematically by solving the Diracequation.The analytical solution for the Makarov potential with pseudospin symmetry is obtained by Nikiforov-Uvarov(N-U)method.The eigenfunctions and eigenenergies are presented with equal mixture of vector and scalar potentials inopposite signs,for which is exact.
文摘An intriguing quasi-relativistic wave equation, which is useful between the range of applications of the Schr<span style="white-space:nowrap;">ö</span>dinger and the Klein-Gordon equations, is discussed. This equation allows for a quantum description of a constant number of spin-0 particles moving at quasi-relativistic energies. It is shown how to obtain a Pauli-like version of this equation from the Dirac equation. This Pauli-like quasi-relativistic wave equation allows for a quantum description of a constant number of spin-1/2 particles moving at quasi-relativistic energies and interacting with an external electromagnetic field. In addition, it was found an excellent agreement between the energies of the electron in heavy Hydrogen-like atoms obtained using the Dirac equation, and the energies calculated using a perturbation approach based on the quasi-relativistic wave equation. Finally, it is argued that the notable quasi-relativistic wave equation discussed in this work provides interesting pedagogical opportunities for a fresh approach to the introduction to relativistic effects in introductory quantum mechanics courses.
基金National Natural Science Foundation of China under Grant Nos.10125521 and 60371013the 973 State Key Basic Research Development Project of China under Grant No.G2000077400
文摘The Dirac equations with vector and scalar potentials of the Coulomb types in two and three dimensions are solved using the supersymmetric quantum mechanics method. For the system of such potentials, the analytical expressions of the matrix dements for both position and momentum operators are obtained.
基金Project supported by Erciyes University-FBA-09-999
文摘Studying with the asymptotic iteration method, we present approximate solutions of the Dirac equation for the Eckart potential in the case of position-dependent mass. The centrifugal term is approximated by an exponential form, and the relativistic energy spectrum and the normalized eigenfunctions are obtained explicitly.
文摘Approximate analytical solutions of the Dirac equation in the case of pseudospin and spin symmetry limits are inves- tigated under the Deng-Fan potential by applying the asymptotic iteration method for the arbitrary quantum numbers n and ~~. Some of the numerical results are also represented in both pseudospin symmetry and spin symmetry limits.
文摘An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic P ¨oschl–Teller potential combined with trigonometric Scarf II non-central potential is studied analytically. It is assumed that the scalar potential equals the vector potential in order to obtain analytical solutions. Both radial and angular parts of the Dirac equation are solved using the Nikiforov–Uvarov method. A relativistic energy spectrum and the relation between quantum numbers can be obtained using this method. Several quantum wave functions corresponding to several states are also presented in terms of the Jacobi Polynomials.
基金supported by the Scientific and Technological Research Council of Turkey
文摘Using the Nikiforov-Uvarov (NU) method, pseudospin and spin symmetric solutions of the Dirac equation for the scalar and vector Hulthen potentials with the Yukawa-type tensor potential are obtained for an arbitrary spin-orbit coupling quantum number K. We deduce the energy eigenvalue equations and corresponding upper- and lower-spinor wave functions in both the pseudospin and spin symmetry cases. Numerical results of the energy eigenvalue equations and the upper- and lower-spinor wave functions are presented to show the effects of the external potential and particle mass parameters as well as pseudospin and spin symmetric constants on the bound-state energies and wave functions in the absence and presence of the tensor interaction.
文摘Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S 2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state^a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.
基金Project supported by the Special Funds of the National Natural Science Foundation of China(Grant No.11247288)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11301350)
文摘The aim of this paper is to solve the radial parts of a Dirac equation in Kerr-Newman (KN) geometry. The potential is replaced by a collection of step functions, then the reflection and transmission coefficients as well as the solution of the wave equation are obtained by using a quantum mechanical method. The result shows that the waves with different values of mass will be scatted off very differently.
基金Project supported by the Scientific and Technological Council of Turkey TUBITAK under the Integrated PhD Program Fellowship and the Erciyes University Research Funds,Turkey (Grant No.FBY-10-3401)
文摘The approximate analytical solutions of the Dirac equation with the Poeschl-Teller potential is presented for arbitrary spin-orbit quantum number κ within the framework of the spin symmetry concept. The energy eigenvalues and the corresponding two Dirac spinors are obtained approximately in closed forms. The limiting cases of the energy eigenvalues and the two Dirac spinors are briefly discussed.
文摘The Dirac equation is solved for Killingbeck potential. Under spin symmetry limit, the energy eigenvalues and the corresponding wave functions are obtained by using wave function ansatz method.