A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl...A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.展开更多
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it...A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models.展开更多
An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-neares...An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.展开更多
The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the clas...The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the classification of upper arm motions;where this algorithm was mainly used in face recognition and voice recognition. Also a comparison between the Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-NN) algorithm is made for the classification of upper arm motions. The obtained results demonstrate superior performance of LDA to k-NN. The classification results give very accurate classification with very small classification errors. This paper is organized as follows: Muscle Anatomy, Data Classification Methods, Theory of Linear Discriminant Analysis, k-Nearest Neighbor (kNN) Algorithm, Modeling of EMG Pattern Recognition, EMG Data Generator, Electromyography Feature Extraction, Implemented System Results and Discussions, and finally, Conclusions. The proposed structure is simulated using MATLAB.展开更多
为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA...为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。展开更多
Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effec...Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effectively overcome the limitation of linear discriminant analysis (LDA) due to data distribution assumption and available projection directions.However,MFA confronts the undersampled problems.Generalized marginal Fisher analysis (GMFA) based on a new optimization criterion is presented,which is applicable to the undersampled problems.The solutions to the proposed criterion for GMFA are derived,which can be characterized in a closed form.Among the solutions,two specific algorithms,namely,normal MFA (NMFA) and orthogonal MFA (OMFA),are studied,and the methods to implement NMFA and OMFA are proposed.A comparative study on the undersampled problem of face recognition is conducted to evaluate NMFA and OMFA in terms of classification accuracy,which demonstrates the effectiveness of the proposed algorithms.展开更多
Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influe...Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.展开更多
基金The National Natural Science Foundation of China (No.61374194)
文摘A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
文摘A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models.
文摘An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.
文摘The EMG signal which is generated by the muscles activity diffuses to the skin surface of human body. This paper presents a pattern recognition system based on Linear Discriminant Analysis (LDA) algorithm for the classification of upper arm motions;where this algorithm was mainly used in face recognition and voice recognition. Also a comparison between the Linear Discriminant Analysis (LDA) and k-Nearest Neighbor (k-NN) algorithm is made for the classification of upper arm motions. The obtained results demonstrate superior performance of LDA to k-NN. The classification results give very accurate classification with very small classification errors. This paper is organized as follows: Muscle Anatomy, Data Classification Methods, Theory of Linear Discriminant Analysis, k-Nearest Neighbor (kNN) Algorithm, Modeling of EMG Pattern Recognition, EMG Data Generator, Electromyography Feature Extraction, Implemented System Results and Discussions, and finally, Conclusions. The proposed structure is simulated using MATLAB.
文摘为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。
基金supported by Science Foundation of the Fujian Province of China (No. 2010J05099)
文摘Marginal Fisher analysis (MFA) not only aims to maintain the original relations of neighboring data points of the same class but also wants to keep away neighboring data points of the different classes.MFA can effectively overcome the limitation of linear discriminant analysis (LDA) due to data distribution assumption and available projection directions.However,MFA confronts the undersampled problems.Generalized marginal Fisher analysis (GMFA) based on a new optimization criterion is presented,which is applicable to the undersampled problems.The solutions to the proposed criterion for GMFA are derived,which can be characterized in a closed form.Among the solutions,two specific algorithms,namely,normal MFA (NMFA) and orthogonal MFA (OMFA),are studied,and the methods to implement NMFA and OMFA are proposed.A comparative study on the undersampled problem of face recognition is conducted to evaluate NMFA and OMFA in terms of classification accuracy,which demonstrates the effectiveness of the proposed algorithms.
基金Foundations of National High Technology (863) Programme (Grant No. 2006AA02Z312)Innovative Group Programme for Graduates of Chongqing Uni-versity, Science and Innovation Fund (Grant No. 200711C1A0010260)+4 种基金National 111 Programme Introducing Talents of Discipline to Universities (Grant No. 0507111106)Chongqing Municipality Basic and Applied Fundamental Science Fund (Grant No. 01-3-6)National Chunhui Project Foundation (Grant No. 99-4-4+3-7)State Key Laboratory of Chemo/Biosensing and Chemometrics Fund (Grant No.2005012)Fok-Yingtung Educational Foundation (Grant No. 98-7-6)
文摘Total 200 properties related to structural characteristics were employed to represent structures of 400 HA coded proteins of influenza virus as training samples. Some recognition models for HA proteins of avian influenza virus (AIV) were developed using support vector machine (SVM) and linear discriminant analysis (LDA). The results obtained from LDA are as follows: the identification accuracy (Ria) for training samples is 99.8% and Ria by leave one out cross validation is 99.5%. Both Ria of 99.8% for training samples and Ria of 99.3% by leave one out cross validation are obtained using SVM model, respectively. External 200 HA proteins of influenza virus were used to validate the external predictive power of the resulting model. The external Ria for them is 95.5% by LDA and 96.5% by SVM, respectively, which shows that HA proteins of AIVs are preferably recognized by SVM and LDA, and the performances by SVM are superior to those by LDA.