In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get the...In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.展开更多
We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 104...We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.展开更多
The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit ...The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.展开更多
The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV...The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.展开更多
Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant t...Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.展开更多
The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of a...The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.展开更多
Seawater greenhouse(SWGH)is a technology established to overcome issues related to open field cultivation in arid areas,such as the high ambient temperature and the shortage of freshwater.It adopts the humidification-...Seawater greenhouse(SWGH)is a technology established to overcome issues related to open field cultivation in arid areas,such as the high ambient temperature and the shortage of freshwater.It adopts the humidification-dehumidification concept where evaporated moisture from a saline water source is condensed to produce freshwater within the greenhouse body.Various condenser designs are adopted to increase freshwater production in order to meet the irrigation demand.The aim of this study was to experimentally investigate the practicality of using the packed-type direct contact condenser in the SWGH to produce more freshwater at low costs,simple design and high efficiency,and to explore the impact of the manipulating six operational variables(inlet air temperature of the humidifier,air mass flowrate of the humidifier,inlet water temperature of the humidifier,water mass flowrate of the humidifier,inlet water temperature of the dehumidifier and water mass flowrate of the dehumidifier)on freshwater condensation rate.For this purpose,a direct contact condenser was designed and manufactured.Sixty-four full factorial experiments were conducted to study the effect of the six operational variables.Each variable was operated at two levels(high and low flowrate),and each experiment lasted for 10 min and followed by a 30-min waiting time.Results showed that freshwater production varied between 0.257 and 2.590 L for every 10 min.When using Minitab statistical software to investigate the significant variables that contributed to the maximum freshwater production,it was found that the inlet air temperature of the humidifier had the greatest influence,followed by the inlet water temperature of the humidifier;the former had a negative impact while the latter had a positive impact on freshwater production.The response optimizer tool revealed that the optimal combination of variables contributed to maximize freshwater production when all variables were in the high mode and the inlet air temperature of the humidifier was in the low mode.The comparison between the old plastic condenser and the new proposed direct contact condenser showed that the latter can produce 75.9 times more freshwater at the same condenser volume.展开更多
The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow f...The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.展开更多
In air-cooled condenser, high temperature condensing water m summer which approaching and exceed 60* C, which may result in filter materials degradation and release impurities. This paper discusses an influencing fac...In air-cooled condenser, high temperature condensing water m summer which approaching and exceed 60* C, which may result in filter materials degradation and release impurities. This paper discusses an influencing factor, water-filter ratio (soaking solution and filter quality ratio), on leachable dissolution rate and filter material degradation rate m high temperature water. The UV absorption at 254nm (A254) and the exchange capacity ware measured after heat test as composite indicators. In addition, the Wends of A254 variation with heating time were measured in different water-filter ratio. The stability is probably due to the effect of water-filter ratio. This has been further borne out that, water-filter ratio increases, leachable concentration decreases exponentially and tends to a fLxed value.展开更多
Helmert’s second method of condensation is an effective method for terrain reduction in the geoid and quasi-geoid determinations. Condensing the masses outside the geoid to a surface layer on the geoid produces sever...Helmert’s second method of condensation is an effective method for terrain reduction in the geoid and quasi-geoid determinations. Condensing the masses outside the geoid to a surface layer on the geoid produces several forms of topographic effects: direct effect on gravity, secondary indirect effect on gravity and indirect effects on the (quasi-) geoid, respectively. To strike a balance between computation accuracy and numerical efficiency, the global integration region of topographic effects is usually divided into near zone and far zone. We focus on the computation of near-zone topographic effects, which are functions of actual topographic masses and condensed masses. Since there have already been mature formulas for gravitational attraction and potential of actual topographic masses using rectangular prism model, we put forward surface element model for condensed masses. Afterwards, the formulas for near-zone direct and indirect effects are obtained easily by combining the rectangular prism model and surface element model. To overcome the planar approximation errors involved with the new formulas for near-zone topographic effects, the Earth’s curvature can be taken into account. It is recommended to apply the formulas based on the rectangular prism and surface element considering the Earth’s curvature to calculate near-zone topographic effects for high-accuracy demand to determine geoid and quasi-geoid.展开更多
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘In order to get thermal flow field of direct air-cooled system,the hot water was supplied to the model of direct air-cooled condenser(ACC). The particle image velocimetery (PIV) experiments were carried out to get thermal flow field of a ACC under different conditions in low velocity wind tunnel,at the same time,the recirculation ratio at cooling tower was measured,so the relationship between flow field characteristics and recirculation ratio of cooling tower can be discussed. From the results we can see that the flow field configuration around cooling tower has great effects on average recirculation ratio under cooling tower. The eddy formed around cooling tower is a key reason that recirculation produces. The eddy intensity relates to velocity magnitude and direction angle,and the configuration of eddy lies on the geometry size of cooling tower. So changing the flow field configuration around cooling tower reasonably can decrease recirculation ratio under cooling tower,and heat dispel effect of ACC can also be improved.
文摘We conducted a transient experimental investigation of steam–water direct contact condensation in the absence of noncondensible gas in a laboratory-scale column with the inner diameter of 325 mm and the height of 1045 mm. We applied a new analysis method for the steam state equation to analyze the molar quantity change in steam over the course of the experiment and determined the transient steam variation. We also investigated the influence of flow rates and temperatures ofcooling water on the efficiency ofsteam condensation. Our experimental results show that appropriate increasing of the cooling water flow rate can significantly accelerate the steam condensation. We achieved a rapid increase in the total volumetric heat transfer coefficient by increasing the flow rate of cooling water, which indicated a higher thermal convection between the steam and the cooling water with higher flow rates. We found that the temperature ofcooling water did not play an important role on steam condensation. This method was confirmed to be effective for rapid recovering ofsteam.
文摘The exergy analysis and finite time thermodynamic methods had been employed to analyze the compound condensation process (CCP). It was based on the air-cooling heat pump unit. The cooling capacity of the chiller unit is about 1 kW, and the work refrigerant is R22/R407C/R410A/CO2. The MATLAB/SIMULINK software was employed to build the simulation model. The thermodynamic simulation model is significant for the optimization of parameters of the unit, such as condensation and evaporation temperature and mass flow of the sanitary hot water and size of hot water storage tank. The COP of the CCP of R410A system is about 3% - 5% higher than the CCP of the R22 system, while CCP of the R407C system is a little lower than the CCP of R22 system. And the CCP of CO2 trans-critical system has advantage in the hot supply mode. The simulation method provided a theoretical reference for developing the production of CCP with substitute refrigerant R407C/R410A/CO2.
文摘The paper introduces thermal buoyancy effects to experimental investigation of wind tunnel simulation on direct air-cooled condenser for a large power plant. In order to get thermal flow field of air-cooled tower, PIV experiments are carried out and recirculation ratio of each condition is calculated. Results show that the thermal flow field of the cooling tower has great influence on the recirculation under the cooling tower. Ameliorating the thermal flow field of the cooling tower can reduce the recirculation under the cooling tower and improve the efficiency of air-cooled condenser also.
文摘Given the distribution feature of resources such as coal and water, the requirements for the development of Chinese power industry, and the fact of monopoly by foreign companies, it is very necessary and significant to independently research and develop air-cooling technologies. Through experimental research, simulative calculation, process and equipment development, field tests and a demonstration project, the design and operation technologies for air-cooling system are grasped and relevant key equipment is developed. The results of the demonstration project show that the technical indicators for the air-cooling system have met or exceeded the design requirements. Part of the research results have been incorporated into the relevant national design standards. The technologies developed have been applied to more than 23 sets of thermal power units of or above 600 MW in China.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No.2009CB219804)
文摘The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.
基金the Sultan Qaboos University for the research grant provided through His Majesty Sultan Qaboos Trust Fund(Project code:#SR/AGR/SWAE/17/01).
文摘Seawater greenhouse(SWGH)is a technology established to overcome issues related to open field cultivation in arid areas,such as the high ambient temperature and the shortage of freshwater.It adopts the humidification-dehumidification concept where evaporated moisture from a saline water source is condensed to produce freshwater within the greenhouse body.Various condenser designs are adopted to increase freshwater production in order to meet the irrigation demand.The aim of this study was to experimentally investigate the practicality of using the packed-type direct contact condenser in the SWGH to produce more freshwater at low costs,simple design and high efficiency,and to explore the impact of the manipulating six operational variables(inlet air temperature of the humidifier,air mass flowrate of the humidifier,inlet water temperature of the humidifier,water mass flowrate of the humidifier,inlet water temperature of the dehumidifier and water mass flowrate of the dehumidifier)on freshwater condensation rate.For this purpose,a direct contact condenser was designed and manufactured.Sixty-four full factorial experiments were conducted to study the effect of the six operational variables.Each variable was operated at two levels(high and low flowrate),and each experiment lasted for 10 min and followed by a 30-min waiting time.Results showed that freshwater production varied between 0.257 and 2.590 L for every 10 min.When using Minitab statistical software to investigate the significant variables that contributed to the maximum freshwater production,it was found that the inlet air temperature of the humidifier had the greatest influence,followed by the inlet water temperature of the humidifier;the former had a negative impact while the latter had a positive impact on freshwater production.The response optimizer tool revealed that the optimal combination of variables contributed to maximize freshwater production when all variables were in the high mode and the inlet air temperature of the humidifier was in the low mode.The comparison between the old plastic condenser and the new proposed direct contact condenser showed that the latter can produce 75.9 times more freshwater at the same condenser volume.
基金supported by the National Basic Research Program of China (2009CB219804)the National Key Technology R&D Program of China (2011BAA04B02)
文摘The aerodynamic behavior of tens of axial flow fans incorporated with air-cooled condensers in a power plant is different from that of an individual fan.Investigation of the aerodynamic characteristics of axial flow fan array benefits its design optimization and running regulation.Based on a representative 2600 MW direct-dry cooling power plant,the flow rate of each fan and the overall flow rate of the fan array are obtained in the absence of ambient wind and at various wind speeds and directions,using CFD simulation.The cluster factor of each fan and the average cluster factor of the fan array are calculated and analyzed.Results show that the cluster factors are different from each other and that the cluster effect with ambient wind is significantly different from the cluster effect with no wind.The fan at the periphery of the array or upwind of the ambient wind generally has a small cluster factor.The average cluster factor of the array decreases with the increasing wind speeds and also varies widely with wind direction.The cluster effect of the axial flow fan array can be applied to optimize the design and operation of air-cooled condensers in a power plant.
文摘In air-cooled condenser, high temperature condensing water m summer which approaching and exceed 60* C, which may result in filter materials degradation and release impurities. This paper discusses an influencing factor, water-filter ratio (soaking solution and filter quality ratio), on leachable dissolution rate and filter material degradation rate m high temperature water. The UV absorption at 254nm (A254) and the exchange capacity ware measured after heat test as composite indicators. In addition, the Wends of A254 variation with heating time were measured in different water-filter ratio. The stability is probably due to the effect of water-filter ratio. This has been further borne out that, water-filter ratio increases, leachable concentration decreases exponentially and tends to a fLxed value.
基金The National Natural Science Foundation of China (41674025,41674082)The Independent Research Foundation of State Key Laboratory of Geo-information Engineering (SKLGIE2018-ZZ-10).
文摘Helmert’s second method of condensation is an effective method for terrain reduction in the geoid and quasi-geoid determinations. Condensing the masses outside the geoid to a surface layer on the geoid produces several forms of topographic effects: direct effect on gravity, secondary indirect effect on gravity and indirect effects on the (quasi-) geoid, respectively. To strike a balance between computation accuracy and numerical efficiency, the global integration region of topographic effects is usually divided into near zone and far zone. We focus on the computation of near-zone topographic effects, which are functions of actual topographic masses and condensed masses. Since there have already been mature formulas for gravitational attraction and potential of actual topographic masses using rectangular prism model, we put forward surface element model for condensed masses. Afterwards, the formulas for near-zone direct and indirect effects are obtained easily by combining the rectangular prism model and surface element model. To overcome the planar approximation errors involved with the new formulas for near-zone topographic effects, the Earth’s curvature can be taken into account. It is recommended to apply the formulas based on the rectangular prism and surface element considering the Earth’s curvature to calculate near-zone topographic effects for high-accuracy demand to determine geoid and quasi-geoid.