Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction...Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH 4-in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm 2.The DBFC using Sm 2 O 3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm 2 was obtained at the cell voltage of 0.52 V.展开更多
In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon mat...In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability.展开更多
基金supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and National Natural Science Foundation of China (20803057)support by the National Self-determined and Innovative Research Funds of WUT
文摘Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH 4-in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm 2.The DBFC using Sm 2 O 3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm 2 was obtained at the cell voltage of 0.52 V.
文摘In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability.