期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rare earth metal oxides as BH_4^--tolerance cathode electrocatalysts for direct borohydride fuel cells
1
作者 倪学敏 王雅东 +2 位作者 郭峰 姚佩 潘牧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2012年第5期437-441,共5页
Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction... Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH 4-in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm 2.The DBFC using Sm 2 O 3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm 2 was obtained at the cell voltage of 0.52 V. 展开更多
关键词 direct borohydride fuel cell oxygen electro-reduction rare earth oxide membraneless DBFC
原文传递
Hydrogen Storage Alloy and Carbon Nanotubes Mixed Catalyst in a Direct Borohydride Fuel Cell
2
作者 Sai Li Xiaodong Yang +2 位作者 Haiyan Zhu Yan Liu Yongning Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2011年第12期1089-1093,共5页
In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon mat... In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability. 展开更多
关键词 direct borohydride fuel cell Carbon nanotubes Hydrogen storage alloy Electrocatalytic activity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部