期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fault Ride Through Strategy of DFIG Using Rotor Voltage Direct Compensation Control Under Voltage Phase Angle Jump 被引量:7
1
作者 Xinshou Tian Weisheng Wang +3 位作者 Xiang Li Yongning Chi Yan Li Haiyan Tang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第4期515-523,共9页
Wind power has developed rapidly in recent years,and large-scale wind power facilities connected to power grids will bring many new challenges.Some new operation charac-teristics of power grids with doubly-fed inducti... Wind power has developed rapidly in recent years,and large-scale wind power facilities connected to power grids will bring many new challenges.Some new operation charac-teristics of power grids with doubly-fed induction generator(DFIG)may exhibit,for example voltage phase angle jumps(VPAJ).VPAJ can negatively impact the fault ride through(FRT)performance of DFIG.This paper firstly investigates the physical mechanism and the operation characteristics of DFIG with VPAJ.It is noted that the current control strategies designed for voltage amplitude changes are not suitable for VPAJ.Secondly,the paper develops an FRT optimization control strategy under VPAJ which optimizes the DFIG operation characteristics.Finally,simulations of a 250 MW wind farm are presented which validate the proposed FRT strategy. 展开更多
关键词 DFIG FRT strategy rotor voltage direct compensation control voltage phase angle jump
原文传递
A Direct Compensative Robust Optimal Control (DCROC) Law for Ship Straight-line Track-keeping 被引量:1
2
作者 李文魁 田蔚风 +2 位作者 周岗 陈永冰 周永余 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第3期364-369,共6页
A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations ... A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law. 展开更多
关键词 SHIP TRACK-KEEPING direct compensative robust optimal control (DCROC) Lyapunov stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部