Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control prot...Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.展开更多
BACKGROUND:Neuro-rehabilitative training has been shown to promote motor function recovery in stroke patients,although the underlying mechanisms have not been fully clarified.OBJECTIVE:To investigate the effects of ...BACKGROUND:Neuro-rehabilitative training has been shown to promote motor function recovery in stroke patients,although the underlying mechanisms have not been fully clarified.OBJECTIVE:To investigate the effects of finger movement training on functional connectivity and information flow direction in cerebral motor areas of healthy people using electroencephalogram (EEG).DESIGN,TIME AND SETTING:A self-controlled,observational study was performed at the College of Life Science and Bioengineering,Beijing University of Technology between December 2008 and April 2009.PARTICIPANTS:Nineteen healthy adults,who seldom played musical instruments or keyboards,were included in the present study.METHODS:Specific finger movement training was performed,and all subjects were asked to separately press keys with their left or right hand fingers,according to instructions.The task comprised five sessions of test train test train-test.Thirty-six channel EEG signals were recorded in different test sessions prior to and after training.Data were statistically analyzed using one-way analysis of variance.MAIN OUTCOME MEASURES:The number of effective performances,correct ratio,average response time,average movement time,correlation coefficient between pairs of EEG channels,and information flow direction in motor regions were analyzed and compared between different training sessions.RESULTS:Motor function of all subjects was significantly improved in the third test comparedwith the first test (P〈 0.01).More than 80% of connections were strengthened in the motor-related areas following two training sessions,in particular the primary motor regions under the C4 electrode.Compared to the first test,a greater amount of information flowed from the Cz and Fcz electrodes (corresponding to supplementary motor area) to the C4 electrode in the third test.CONCLUSION:Finger task training increased motor ability in subjects by strengthening connections and changing information flow in the motor areas.These results provided a greater understanding of the mechanisms involved in motor rehabilitation.展开更多
目的:研究双侧经颅直流电刺激(dual-hemispheric transcranial direct current stimulation,Dual-tDCS)对慢性期脑卒中患者上肢运动功能的影响,为治疗慢性期脑卒中上肢功能障碍提供基于神经机制的理论依据。方法:选取某院24例慢性期脑...目的:研究双侧经颅直流电刺激(dual-hemispheric transcranial direct current stimulation,Dual-tDCS)对慢性期脑卒中患者上肢运动功能的影响,为治疗慢性期脑卒中上肢功能障碍提供基于神经机制的理论依据。方法:选取某院24例慢性期脑卒中上肢运动功能障碍患者,按照随机数字表法将其分为研究组(n=13)和对照组(n=11)。对照组采用tDCS伪刺激联合常规康复治疗,研究组采用Dual-tDCS联合常规康复治疗。治疗前后,采用Fugl-Meyer运动功能评定量表上肢部分(Fugl-Meyer assessment upper limb scale,FMA-UL)及日常生活活动能力(activities of daily living,ADL)测评量表对患者活动能力进行评估。对比治疗前后初级运动皮层(M1区)与全脑功能连接(functional connectivity,FC)的变化。使用SPSS 24.0统计学软件进行数据分析。结果:治疗后,2组患者的FMA-UL、ADL评分比治疗前均显著提高,且研究组评分明显高于对照组,差异有统计学意义(P<0.05)。M1区与全脑FC分析显示,治疗后对照组健侧M1区到患侧枕中回、健侧舌回、健侧角回FC降低(P<0.01);患侧M1区未见FC变化脑区。治疗后研究组健侧M1区到健侧小脑、健侧小脑蚓部FC降低,到患侧中央前回FC增加(P<0.01);患侧M1区到患侧小脑、患侧颞中回FC增加,到健侧中央前回FC降低(P<0.01)。结论:Dual-tDCS对大脑的神经调控作用可改善慢性期卒中患者运动和非运动相关脑区的FC,可能是慢性期脑卒中上肢运动功能障碍的康复机制。展开更多
The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilizati...The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.展开更多
针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题,提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detecti...针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题,提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detection)。设计了一个以像素点不同方向特征向量为输入的深度神经网络模型MDF_Net(Multi-Directional Features neural Network),利用MDF_Net对眼底图像进行初步分割;提出连通性检测算法,根据血管的几何特征,对MDF_Net的初步分割结果进一步修订。在公开的眼底图像数据集上,将MDF_Net&CD与近期有代表性的分割方法进行实验对比,结果表明MDF_Net&CD各项评估指标均衡,敏感度,F1值和准确率优于其他方法。该方法能有效捕捉像素点的细节特征,对不规则、噪声干扰严重、边界模糊的细小血管有较好分割效果。展开更多
基金supported by the National Natural Science Foundation of China(61175112)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(G61321002)+3 种基金the Projects of Major International(Regional)Joint Research Program(61120106010)the Beijing Education Committee Cooperation Building Foundationthe Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)the ChangJiang Scholars Program and the Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)
文摘Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China,No. 30670543
文摘BACKGROUND:Neuro-rehabilitative training has been shown to promote motor function recovery in stroke patients,although the underlying mechanisms have not been fully clarified.OBJECTIVE:To investigate the effects of finger movement training on functional connectivity and information flow direction in cerebral motor areas of healthy people using electroencephalogram (EEG).DESIGN,TIME AND SETTING:A self-controlled,observational study was performed at the College of Life Science and Bioengineering,Beijing University of Technology between December 2008 and April 2009.PARTICIPANTS:Nineteen healthy adults,who seldom played musical instruments or keyboards,were included in the present study.METHODS:Specific finger movement training was performed,and all subjects were asked to separately press keys with their left or right hand fingers,according to instructions.The task comprised five sessions of test train test train-test.Thirty-six channel EEG signals were recorded in different test sessions prior to and after training.Data were statistically analyzed using one-way analysis of variance.MAIN OUTCOME MEASURES:The number of effective performances,correct ratio,average response time,average movement time,correlation coefficient between pairs of EEG channels,and information flow direction in motor regions were analyzed and compared between different training sessions.RESULTS:Motor function of all subjects was significantly improved in the third test comparedwith the first test (P〈 0.01).More than 80% of connections were strengthened in the motor-related areas following two training sessions,in particular the primary motor regions under the C4 electrode.Compared to the first test,a greater amount of information flowed from the Cz and Fcz electrodes (corresponding to supplementary motor area) to the C4 electrode in the third test.CONCLUSION:Finger task training increased motor ability in subjects by strengthening connections and changing information flow in the motor areas.These results provided a greater understanding of the mechanisms involved in motor rehabilitation.
文摘目的:研究双侧经颅直流电刺激(dual-hemispheric transcranial direct current stimulation,Dual-tDCS)对慢性期脑卒中患者上肢运动功能的影响,为治疗慢性期脑卒中上肢功能障碍提供基于神经机制的理论依据。方法:选取某院24例慢性期脑卒中上肢运动功能障碍患者,按照随机数字表法将其分为研究组(n=13)和对照组(n=11)。对照组采用tDCS伪刺激联合常规康复治疗,研究组采用Dual-tDCS联合常规康复治疗。治疗前后,采用Fugl-Meyer运动功能评定量表上肢部分(Fugl-Meyer assessment upper limb scale,FMA-UL)及日常生活活动能力(activities of daily living,ADL)测评量表对患者活动能力进行评估。对比治疗前后初级运动皮层(M1区)与全脑功能连接(functional connectivity,FC)的变化。使用SPSS 24.0统计学软件进行数据分析。结果:治疗后,2组患者的FMA-UL、ADL评分比治疗前均显著提高,且研究组评分明显高于对照组,差异有统计学意义(P<0.05)。M1区与全脑FC分析显示,治疗后对照组健侧M1区到患侧枕中回、健侧舌回、健侧角回FC降低(P<0.01);患侧M1区未见FC变化脑区。治疗后研究组健侧M1区到健侧小脑、健侧小脑蚓部FC降低,到患侧中央前回FC增加(P<0.01);患侧M1区到患侧小脑、患侧颞中回FC增加,到健侧中央前回FC降低(P<0.01)。结论:Dual-tDCS对大脑的神经调控作用可改善慢性期卒中患者运动和非运动相关脑区的FC,可能是慢性期脑卒中上肢运动功能障碍的康复机制。
文摘The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.
文摘针对眼底图像中存在大量不规则、噪声干扰严重、边界模糊、分割难度较大的细小血管的问题,提出一种基于多方向特征和连通性检测的眼底图像分割方法MDF_Net&CD(Multi-Directional Features neural Network and Connectivity Detection)。设计了一个以像素点不同方向特征向量为输入的深度神经网络模型MDF_Net(Multi-Directional Features neural Network),利用MDF_Net对眼底图像进行初步分割;提出连通性检测算法,根据血管的几何特征,对MDF_Net的初步分割结果进一步修订。在公开的眼底图像数据集上,将MDF_Net&CD与近期有代表性的分割方法进行实验对比,结果表明MDF_Net&CD各项评估指标均衡,敏感度,F1值和准确率优于其他方法。该方法能有效捕捉像素点的细节特征,对不规则、噪声干扰严重、边界模糊的细小血管有较好分割效果。