DC bias current flowing into the neutral point of power transformer will seriously affect the normal operation of AC power system. In this paper, exciting current, harmonic component of the excitation current, magneti...DC bias current flowing into the neutral point of power transformer will seriously affect the normal operation of AC power system. In this paper, exciting current, harmonic component of the excitation current, magnetic flux density and noise of transformer were analyzed when the transformer is in the no-load operation state based on field-circuit coupled method. Through the calculation and analysis, some reference bases are provided for design of transformer.展开更多
DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researche...DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.展开更多
随着高压直流输电工程的不断投产,以及风电项目的增多,越来越多的风电场出现在电网换相换流器高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)受端换流站近区,两者构成的系统存在振荡风险。为此,...随着高压直流输电工程的不断投产,以及风电项目的增多,越来越多的风电场出现在电网换相换流器高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)受端换流站近区,两者构成的系统存在振荡风险。为此,该文针对直流受端馈入站与近区风电场系统的振荡特性展开研究。首先,建立并验证系统的状态空间模型,基于该模型计算出系统特征值,确定LCC-HVDC与风电场共同参与的振荡主导模式并进行参与因子分析。进一步地,通过对比是否接入LCC-HVDC的主导模式,得到LCC-HVDC的接入会削弱系统阻尼的结论。最后,从系统额定容量、交流系统短路比、风电场并网线路长度等方面探究系统稳定性的影响因素,并分析系统的不同短路比、潮流比对风机网侧换流器(grid-side converter,GSC)外环控制和换流站定电流控制器性能的影响。展开更多
文摘DC bias current flowing into the neutral point of power transformer will seriously affect the normal operation of AC power system. In this paper, exciting current, harmonic component of the excitation current, magnetic flux density and noise of transformer were analyzed when the transformer is in the no-load operation state based on field-circuit coupled method. Through the calculation and analysis, some reference bases are provided for design of transformer.
文摘DC magnetic biasing problem,caused by the DC grounding electrode, threatened the safe operation of AC power grid. In this paper, the characteristics of the soil stratification near DC grounding electrode was researched. The AC-DC interconnected large-scale system model under the monopole operation mode was established. The earth surface potential and DC current distribution in various stations under the different surface thickness was calculated. Some useful conclusions are drawn from the analyzed results.
文摘随着高压直流输电工程的不断投产,以及风电项目的增多,越来越多的风电场出现在电网换相换流器高压直流输电(line-commutated-converter based high voltage direct current,LCC-HVDC)受端换流站近区,两者构成的系统存在振荡风险。为此,该文针对直流受端馈入站与近区风电场系统的振荡特性展开研究。首先,建立并验证系统的状态空间模型,基于该模型计算出系统特征值,确定LCC-HVDC与风电场共同参与的振荡主导模式并进行参与因子分析。进一步地,通过对比是否接入LCC-HVDC的主导模式,得到LCC-HVDC的接入会削弱系统阻尼的结论。最后,从系统额定容量、交流系统短路比、风电场并网线路长度等方面探究系统稳定性的影响因素,并分析系统的不同短路比、潮流比对风机网侧换流器(grid-side converter,GSC)外环控制和换流站定电流控制器性能的影响。