Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited t...Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.展开更多
Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program...Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program has been established to demonstrate and understand the physics of laser direct drive.The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility.This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth ...A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.展开更多
The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce th...The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given.展开更多
Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretica...Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretical models are reviewed in terms of the number of laser beams,system imperfection,and laser beam patterns.Utilizing a self-organizing system of charged particles on a sphere,a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams.As a result,such new configurations as“M48”and“M60”are found to show substantially higher illumination uniformity than any other existing direct drive systems.A new polar direct-drive scheme is proposed with the laser axes keeping off the target center,which can be applied to laser configurations designed for indirectly driven inertial fusion.展开更多
Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is...Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.展开更多
Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. ...Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.展开更多
A high-neutron yield platform imploded by a thin shell target is generally built to probe nuclear science problems,and it has the advantages of high neutron yield,ultrashort fusion time,micro fusion zone,isotropic and...A high-neutron yield platform imploded by a thin shell target is generally built to probe nuclear science problems,and it has the advantages of high neutron yield,ultrashort fusion time,micro fusion zone,isotropic and monoenergetic neutron.Some analytical models have been proposed to interpret exploding-pusher target implosion driven by a long wavelength laser,whereas they are imperfect for a 0.35 μm laser implosion experiment.When using the 0.35 μm laser,the shell is ablated and accelerated to high implosion velocity governed by Newton’s law,ablation acceleration and quasi-adiabatic compression models are suitable to explain the implosion of a laser direct-drive thin shell target.The new analytical model scales bang time,ion temperature and neutron yield for large variations in laser power,target radius,shell thickness,and fuel pressure.The predicted results of the analytical model are in agreement with experimental data on the ShenguangIII prototype laser facility,100 kJ laser facility,Omega,and NIF,it demonstrates that the analytical model benefits the understanding of experiment performance and optimizing the target design of high neutron yield implosion.展开更多
Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) l...Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets.The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target.The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μm in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04 × 10^(13).The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing,and decrease with the increase of the diameter and fuel pressure of the target.The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important.The simulated results validate that the cos γ distribution laser design is reasonable and can achieve a symmetric pressure distribution.Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.展开更多
位于日本东北地区的著名商务印刷企业,川岛印刷有限公司两年前购置了一台曼罗兰七色ROLAND 700 Hi Print胶印机后取得了巨大的成功,因此该公司再次向曼罗兰购买两台ROLAND 700印刷机。川岛印刷有限公司专注于印制精美的说明书、明信片...位于日本东北地区的著名商务印刷企业,川岛印刷有限公司两年前购置了一台曼罗兰七色ROLAND 700 Hi Print胶印机后取得了巨大的成功,因此该公司再次向曼罗兰购买两台ROLAND 700印刷机。川岛印刷有限公司专注于印制精美的说明书、明信片和宣传单等业务,他们的印刷品需求量很大,因为日本东北地区是热门的旅游圣地之一。展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375363)Xi’an Municipal Science and Technology Planning Project of China(Grant No.CX12504)Guangdong Provincial Key Technology Project on Emerging Industries of Strategic Importance of China(Grant No.2012A090100010)
文摘Direct drive servovalves are mostly restricted to low flow rate and low bandwidth applications due to the considerable flow forces.Current studies mainly focus on enhancing the driving force,which in turn is limited to the development of the magnetic material.Aiming at reducing the flow forces,a novel rotary direct drive servovalve(RDDV)is introduced in this paper.This RDDV servovalve is designed in a rotating structure and its axially symmetric spool rotates within a certain angle range in the valve chamber.The servovalve orifices are formed by the matching between the square wave shaped land on the spool and the rectangular ports on the sleeve.In order to study the RDDV servovalve performance,flow rate model and mechanical model are established,wherein flow rates and flow induced torques at different spool rotation angles or spool radiuses are obtained.The model analysis shows that the driving torque can be alleviated due to the proposed valve structure.Computational fluid dynamics(CFD)analysis using ANSYS/FLUENT is applied to evaluate and validate the theoretical analysis.In addition,experiments on the flow rate and the mechanical characteristic of the RDDV servovalve are carried out.Both simulation and experimental results conform to the results of the theoretical model analysis,which proves that this novel and innovative structure for direct drive servovalves can reduce the flow force on the spool and improve valve frequency response characteristics.This research proposes a novel rotary direct drive servovalve,which can reduce the flow forces effectively.
文摘Along with laser-indirect(X-ray)-drive and magnetic-drive target concepts,laser direct drive is a viable approach to achieving ignition and gain with inertial confinement fusion.In the United States,a national program has been established to demonstrate and understand the physics of laser direct drive.The program utilizes the Omega Laser Facility to conduct implosion and coupling physics at the nominally 30-kJ scale and lasereplasma interaction and coupling physics at the MJ scale at the National Ignition Facility.This article will discuss the motivation and challenges for laser direct drive and the broad-based program presently underway in the United States.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金This project is supported by National Natural Science Foundation of China (No.E50575234).
文摘A direct digital design method (DDDM) of worm-gear drive is proposed. It is directly based on the simulation of manufacturing process and completely different from the conventional modeling method. The loaded tooth contact analysis (LTCA) method is analyzed, in which the advanced surface to surface searching technique is included. The influence of misalignment errors and contact deformations on contact zone and transmission error (TE) is discussed. Combined modification approach on worm tooth surface is presented. By means of DDDM and LTCA, it is very conven- ient to verify the effect of worm-gear drive's modification approach. The analysis results show that, the modification in profile direction reduces the sensitivity of worm-gear drive to misalignment errors and the modification in longitudinal direction decreases the TE. Thus the optimization design of worm-gear drive can be achieved prior to the actual manufacturing process.
文摘The direct drive electro-hydraulic servo system is a new approach hydraulic system. It is much smaller and easier controlled than traditional systems and is a perfect energy saver. This paper will briefly introduce the popular nonlinearities in the electro-hydraulic system and analyse the effect of nonlinearities in direct drive electro-hydraulic position servo system by means of simulation research. Some valuable conclusions are given.
基金This work was supported by the Japan Society for the Promotion of Science(JSPS).
文摘Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretical models are reviewed in terms of the number of laser beams,system imperfection,and laser beam patterns.Utilizing a self-organizing system of charged particles on a sphere,a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams.As a result,such new configurations as“M48”and“M60”are found to show substantially higher illumination uniformity than any other existing direct drive systems.A new polar direct-drive scheme is proposed with the laser axes keeping off the target center,which can be applied to laser configurations designed for indirectly driven inertial fusion.
基金funded by Youth Program of National Natural Science Foundation of China(52002034)National Key R&D Program of China(2018YFB1600701)+2 种基金Key Research and Development Program of Shaanxi(2020ZDLGY16-01,2019ZDLGY15-02)Natural Science Basic Research Program of Shaanxi(2020JQ-381)Fundamental Research Funds for the Central Universities,CHD(300102220113).
文摘Combined with the characteristics of the distributed-drive electric vehicle and direct yaw moment control,a double-layer structure direct yaw moment controller is designed.The upper additional yaw moment controller is constructed based on model predictive control.Aiming at minimizing the utilization rate of tire adhesion and constrained by the working characteristics of motor system and brake system,a quadratic programming active set was designed to optimize the distribution of additional yaw moments.The road surface adhesion coefficient has a great impact on the reliability of direct yaw moment control,for which joint observer of vehicle state parameters and road surface parameters is designed by using unscented Kalman filter algorithm,which correlates vehicle state observer and road surface parameter observer to form closed-loop feedback correction.The results show that compared to the“feedforward+feedback”control,the vehicle’s error of yaw rate and sideslip angle by the model predictive control is smaller,which can improve the vehicle stability effectively.In addition,according to the results of the docking road simulation test,the joint observer of vehicle state and road surface parameters can improve the adaptability of the vehicle stability controller to the road conditions with variable adhesion coefficients.
基金Supported by the PetroChina Science and Technology Project(2016B-4104)
文摘Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775203 and 12075219)the Innovation and Development Fund of China Academy of Engineering Physics(Grant No.CX20210019)。
文摘A high-neutron yield platform imploded by a thin shell target is generally built to probe nuclear science problems,and it has the advantages of high neutron yield,ultrashort fusion time,micro fusion zone,isotropic and monoenergetic neutron.Some analytical models have been proposed to interpret exploding-pusher target implosion driven by a long wavelength laser,whereas they are imperfect for a 0.35 μm laser implosion experiment.When using the 0.35 μm laser,the shell is ablated and accelerated to high implosion velocity governed by Newton’s law,ablation acceleration and quasi-adiabatic compression models are suitable to explain the implosion of a laser direct-drive thin shell target.The new analytical model scales bang time,ion temperature and neutron yield for large variations in laser power,target radius,shell thickness,and fuel pressure.The predicted results of the analytical model are in agreement with experimental data on the ShenguangIII prototype laser facility,100 kJ laser facility,Omega,and NIF,it demonstrates that the analytical model benefits the understanding of experiment performance and optimizing the target design of high neutron yield implosion.
基金Project supported by the National Natural Science Foundation of China(Grant No.11605178)the Science Challenging Project,China(Grant Nos.JCKY2016212A505 and TZ2016001)
文摘Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets.The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target.The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μm in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04 × 10^(13).The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing,and decrease with the increase of the diameter and fuel pressure of the target.The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important.The simulated results validate that the cos γ distribution laser design is reasonable and can achieve a symmetric pressure distribution.Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.
文摘位于日本东北地区的著名商务印刷企业,川岛印刷有限公司两年前购置了一台曼罗兰七色ROLAND 700 Hi Print胶印机后取得了巨大的成功,因此该公司再次向曼罗兰购买两台ROLAND 700印刷机。川岛印刷有限公司专注于印制精美的说明书、明信片和宣传单等业务,他们的印刷品需求量很大,因为日本东北地区是热门的旅游圣地之一。