Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, ...Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis(DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He–Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio(SNR) of the clear round focus is 50 and the size is about 44 μm. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.展开更多
Based on the analysis of the spurious introduced by phase accumulation truncation which was made by Nicholas, a new simplified algorithm for spurious spectrum in the presence of phase truncation is presented by using ...Based on the analysis of the spurious introduced by phase accumulation truncation which was made by Nicholas, a new simplified algorithm for spurious spectrum in the presence of phase truncation is presented by using the mapping mathematics and number theoretic method, it is possible to precisely analyze the spurious location and the spurious amplitude introduced by phase truncation in practical applications by computer.展开更多
Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this pa...Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this paper, two different kinds of spurious signals due to amplitude quantization in DDFSs are exactly formulated in the time domain and detailedly compared in the frequency do- main, and the effects of the DDFS parameter variations on the spurious performance are thoroughly studied. Then the spectral properties and power levels of the amplitude-quantization spurs in the absence of phase-accumulator truncation are emphatically analyzed by waveform estimation and computer simulation, and several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.展开更多
提出了一种新的选择迭代式高速高精度CORDIC(COrdinate Rotation Digital Computer)算法.基于表驱动法缩小目标旋转角度,通过改进的基本角度选择方法旁路不必要的迭代;并以移位和减法实现幅度校正,减小硬件资源消耗.设定角度误差小于10^...提出了一种新的选择迭代式高速高精度CORDIC(COrdinate Rotation Digital Computer)算法.基于表驱动法缩小目标旋转角度,通过改进的基本角度选择方法旁路不必要的迭代;并以移位和减法实现幅度校正,减小硬件资源消耗.设定角度误差小于10^(-5)rad时,迭代次数减小至7次以下.在DDFS(Direct Digital Frequency Synthesizer)的应用中,利用区间压缩技术在Xilinx的FPGA中实现20位定点小数电路设计.仿真及实测结果表明,该算法幅度误差小于2×10^(-5),输出延时不大于43.5ns,同时硬件资源消耗不增加.展开更多
This paper presents a novel direct digital frequency synthesizer (DDFS) architecture based on nonlinear DAC coarse quantization and the ROM-based piecewise approximation method, which has the advantages of high spee...This paper presents a novel direct digital frequency synthesizer (DDFS) architecture based on nonlinear DAC coarse quantization and the ROM-based piecewise approximation method, which has the advantages of high speed, low power and low hardware resources. By subdividing the sinusoid into a collection of phase segments, the same initial value of each segment is realized by a nonlinear DAC. The ROM is decomposed with a coarse ROM and fine ROM using the piecewise approximation method. Then, the coarse ROM stores the offsets between the initial value of the common segment and the initial value of each line in the same segment. Meanwhile, the fine ROM stores the differences between the line values and the initial value of each line. A ROM compression ratio of 32 can be achieved in the case of 11 bit phase and 9 bit amplitude. Based on the above method, a prototype chip was fabricated using 1.4 #m GaAs HBT technology. The measurement shows an average spurious-free dynamic range (SFDR) of 45 dBc, with the worst SFDR only 40.07 dBc at a 4.0 GHz clock. The chip area is 4.6 × 3.7 mm2 and it consumes 7 W from a --4.9 V power supply.展开更多
This paper presents a direct digital frequency synthesizer (DDFS) for high speed application based on multi-channel structure. This DDFS has phase resolution of 32 bits and magnitude resolution of 12 bits. In order ...This paper presents a direct digital frequency synthesizer (DDFS) for high speed application based on multi-channel structure. This DDFS has phase resolution of 32 bits and magnitude resolution of 12 bits. In order to ensure the high speed and high resolution at the same time, the multi-channel sampling technique is used and a 12 bits linear digital-to-analog converter is implemented. The chip is fabricated in TSMC 130 nm CMOS technology with active area of 0.89 x 0.98 mm2 and total power consumption of 300 mW at a single 1.2 V supply voltage. The maximum operating speed is up to 2.0 GHz at room temperature.展开更多
本文提出了一种直接数字频率合成器(DDFS)的设计,以Parallel_CORDIC(COrdinate Rotation Digital Computer)算法模块替代传统的查找表方式,实现了相位与幅度的一一对应,输出相位完全正交的正余弦波形;同时应用旋转角度预测及4:2的进位...本文提出了一种直接数字频率合成器(DDFS)的设计,以Parallel_CORDIC(COrdinate Rotation Digital Computer)算法模块替代传统的查找表方式,实现了相位与幅度的一一对应,输出相位完全正交的正余弦波形;同时应用旋转角度预测及4:2的进位保存加法器(CSA)技术,将速度比传统CORDIC算法提高41.7%,精度提高到10-4.最后以Xilinx的FPGA硬件实现整个设计.展开更多
设计了一种基于正交调制原理的数字频率特性测试仪,系统用稳态响应法测量电路的频率特性.单片机作为主控芯片,完成系统的总体控制及数字信号处理;使用集成的直接数字频率合成芯片输出全频率范围内的正弦波.系统对待测电路的输入信号及...设计了一种基于正交调制原理的数字频率特性测试仪,系统用稳态响应法测量电路的频率特性.单片机作为主控芯片,完成系统的总体控制及数字信号处理;使用集成的直接数字频率合成芯片输出全频率范围内的正弦波.系统对待测电路的输入信号及其输出响应采样,经数字信号处理后,获得电路的幅频特性和相频特性.设计的测试仪测某RLC网络,中心频率的相对误差小于0.2%,有载品质因数相对误差小于1.25%,最大电压增益大于-1 d B.频率特性测试仪输入输出阻抗均为50Ω,幅频误差绝对值小于0.5 d B,相频误差绝对值小于3°,测试仪能满足微机械谐振传感器特征参数测试需求.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0401902 and 2016YFB0402001)Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B010926001)。
文摘Phase modulation is a crucial step when the frequency-based wavefront optimization technique is exploited to measure the optical transmission matrix(TM) of a scattering medium. We report a simple but powerful method, direct digital frequency synthesis(DDS) technology to modulate the phase front of the laser and measure the TM. By judiciously modulating the phase front of a He–Ne laser beam, we experimentally generate a high quality focus at any targeted location through a 2 mm thick 120 grit ground glass diffuser, which is commercially used in laser display and laser holographic display for improving brightness uniformity and reducing speckle. The signal to noise ratio(SNR) of the clear round focus is 50 and the size is about 44 μm. Our study will open up new avenues for enhancing light energy delivery to the optical engine in laser TV to lower the power consumption, phase compensation to reduce the speckle noise, and controlling the lasing threshold in random lasers.
文摘Based on the analysis of the spurious introduced by phase accumulation truncation which was made by Nicholas, a new simplified algorithm for spurious spectrum in the presence of phase truncation is presented by using the mapping mathematics and number theoretic method, it is possible to precisely analyze the spurious location and the spurious amplitude introduced by phase truncation in practical applications by computer.
基金Supported by National High-Technology Research and Development Plan of China (Grant No.2006AA01Z452)
文摘Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this paper, two different kinds of spurious signals due to amplitude quantization in DDFSs are exactly formulated in the time domain and detailedly compared in the frequency do- main, and the effects of the DDFS parameter variations on the spurious performance are thoroughly studied. Then the spectral properties and power levels of the amplitude-quantization spurs in the absence of phase-accumulator truncation are emphatically analyzed by waveform estimation and computer simulation, and several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.
文摘提出了一种新的选择迭代式高速高精度CORDIC(COrdinate Rotation Digital Computer)算法.基于表驱动法缩小目标旋转角度,通过改进的基本角度选择方法旁路不必要的迭代;并以移位和减法实现幅度校正,减小硬件资源消耗.设定角度误差小于10^(-5)rad时,迭代次数减小至7次以下.在DDFS(Direct Digital Frequency Synthesizer)的应用中,利用区间压缩技术在Xilinx的FPGA中实现20位定点小数电路设计.仿真及实测结果表明,该算法幅度误差小于2×10^(-5),输出延时不大于43.5ns,同时硬件资源消耗不增加.
基金supported by the National Basic Research Program of China(No.2010CB327505)
文摘This paper presents a novel direct digital frequency synthesizer (DDFS) architecture based on nonlinear DAC coarse quantization and the ROM-based piecewise approximation method, which has the advantages of high speed, low power and low hardware resources. By subdividing the sinusoid into a collection of phase segments, the same initial value of each segment is realized by a nonlinear DAC. The ROM is decomposed with a coarse ROM and fine ROM using the piecewise approximation method. Then, the coarse ROM stores the offsets between the initial value of the common segment and the initial value of each line in the same segment. Meanwhile, the fine ROM stores the differences between the line values and the initial value of each line. A ROM compression ratio of 32 can be achieved in the case of 11 bit phase and 9 bit amplitude. Based on the above method, a prototype chip was fabricated using 1.4 #m GaAs HBT technology. The measurement shows an average spurious-free dynamic range (SFDR) of 45 dBc, with the worst SFDR only 40.07 dBc at a 4.0 GHz clock. The chip area is 4.6 × 3.7 mm2 and it consumes 7 W from a --4.9 V power supply.
文摘This paper presents a direct digital frequency synthesizer (DDFS) for high speed application based on multi-channel structure. This DDFS has phase resolution of 32 bits and magnitude resolution of 12 bits. In order to ensure the high speed and high resolution at the same time, the multi-channel sampling technique is used and a 12 bits linear digital-to-analog converter is implemented. The chip is fabricated in TSMC 130 nm CMOS technology with active area of 0.89 x 0.98 mm2 and total power consumption of 300 mW at a single 1.2 V supply voltage. The maximum operating speed is up to 2.0 GHz at room temperature.
文摘本文提出了一种直接数字频率合成器(DDFS)的设计,以Parallel_CORDIC(COrdinate Rotation Digital Computer)算法模块替代传统的查找表方式,实现了相位与幅度的一一对应,输出相位完全正交的正余弦波形;同时应用旋转角度预测及4:2的进位保存加法器(CSA)技术,将速度比传统CORDIC算法提高41.7%,精度提高到10-4.最后以Xilinx的FPGA硬件实现整个设计.
文摘设计了一种基于正交调制原理的数字频率特性测试仪,系统用稳态响应法测量电路的频率特性.单片机作为主控芯片,完成系统的总体控制及数字信号处理;使用集成的直接数字频率合成芯片输出全频率范围内的正弦波.系统对待测电路的输入信号及其输出响应采样,经数字信号处理后,获得电路的幅频特性和相频特性.设计的测试仪测某RLC网络,中心频率的相对误差小于0.2%,有载品质因数相对误差小于1.25%,最大电压增益大于-1 d B.频率特性测试仪输入输出阻抗均为50Ω,幅频误差绝对值小于0.5 d B,相频误差绝对值小于3°,测试仪能满足微机械谐振传感器特征参数测试需求.