Current public-opinion propagation research usually focused on closed network topologies without considering the fluctuation of the number of network users or the impact of social factors on propagation. Thus, it rema...Current public-opinion propagation research usually focused on closed network topologies without considering the fluctuation of the number of network users or the impact of social factors on propagation. Thus, it remains difficult to accurately describe the public-opinion propagation rules of social networks. In order to study the rules of public opinion spread on dynamic social networks, by analyzing the activity of social-network users and the regulatory role of relevant departments in the spread of public opinion, concepts of additional user and offline rates are introduced, and the direct immune-susceptible, contacted, infected, and refractory (DI-SCIR) public-opinion propagation model based on real-time online users is established. The interventional force of relevant departments, credibility of real information, and time of intervention are considered, and a public-opinion propagation control strategy based on direct immunity is proposed. The equilibrium point and the basic reproduction number of the model are theoretically analyzed to obtain boundary conditions for public-opinion propagation. Simulation results show that the new model can accurately reflect the propagation rules of public opinion. When the basic reproduction number is less than 1, public opinion will eventually disappear in the network. Social factors can significantly influence the time and scope of public opinion spread on social networks. By controlling social factors, relevant departments can analyze the rules of public opinion spread on social networks to suppress the propagate of negative public opinion and provide a powerful tool to ensure security and stability of society.展开更多
Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,posi...Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,positive subnetwork(PSN) and negative sub-network(NSN).The neuron functions of PSN and NSN are designed according to the increased and decreased secretion functions of hormone,respectively.In order to make the novel neural network learn quickly,the novel neuron based on some characteristics of NEIs is also redesigned.Besides the normal input signals,two control signals are considered in the proposed solution.One is the enable/disable signal,and the other is the slope control signal.The former can modify the structure of NEI-NN,and the later can regulate the evolutionary speed of NEINN.The NEI-NN can obtain the optimized network structure by using error back-propagation(BP) learning algorithm.Since the modeling of the beam pumping unit is very difficult by using the conventional method,the modeling of bean bump unit is chosen to examine the performance of the NEI-NN.The experiment results show that the optimized structure and learning speed of NEI-NN are better than those of the conventional neural network.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61471080)the Equipment Development Department Research Foundation of China (Grant No. 61400010303)+2 种基金the Natural Science Research Project of Liaoning Education Department of China (Grant Nos. JDL2019019 and JDL2020002)the Surface Project for Natural Science Foundation in Guangdong Province of China (Grant No. 2019A1515011164)the Science and Technology Plan Project in Zhanjiang, China (Grant No. 2018A06001)。
文摘Current public-opinion propagation research usually focused on closed network topologies without considering the fluctuation of the number of network users or the impact of social factors on propagation. Thus, it remains difficult to accurately describe the public-opinion propagation rules of social networks. In order to study the rules of public opinion spread on dynamic social networks, by analyzing the activity of social-network users and the regulatory role of relevant departments in the spread of public opinion, concepts of additional user and offline rates are introduced, and the direct immune-susceptible, contacted, infected, and refractory (DI-SCIR) public-opinion propagation model based on real-time online users is established. The interventional force of relevant departments, credibility of real information, and time of intervention are considered, and a public-opinion propagation control strategy based on direct immunity is proposed. The equilibrium point and the basic reproduction number of the model are theoretically analyzed to obtain boundary conditions for public-opinion propagation. Simulation results show that the new model can accurately reflect the propagation rules of public opinion. When the basic reproduction number is less than 1, public opinion will eventually disappear in the network. Social factors can significantly influence the time and scope of public opinion spread on social networks. By controlling social factors, relevant departments can analyze the rules of public opinion spread on social networks to suppress the propagate of negative public opinion and provide a powerful tool to ensure security and stability of society.
基金the Key Project of the National Natural Science Foundation of China(No.61134009)National Natural Science Foundations of China(Nos.61473078,61271001)+5 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)the Fundamental Research Funds for the Central Universities,China(No.09CX04026A)Excellent Youth and Middle Age Scientists Fund of Shandong Province,China(No.BS2010DX038)Fundamental Research Funds for the Central Universities,China(No.14CX02171A)
文摘Inspired by the modulation mechanism of neuroendocrine-immune system(NEIs),a novel structure of artificial neural network(ANN) named NEI-NN and its learning method are presented.The NEI-NN includes two parts,i.e.,positive subnetwork(PSN) and negative sub-network(NSN).The neuron functions of PSN and NSN are designed according to the increased and decreased secretion functions of hormone,respectively.In order to make the novel neural network learn quickly,the novel neuron based on some characteristics of NEIs is also redesigned.Besides the normal input signals,two control signals are considered in the proposed solution.One is the enable/disable signal,and the other is the slope control signal.The former can modify the structure of NEI-NN,and the later can regulate the evolutionary speed of NEINN.The NEI-NN can obtain the optimized network structure by using error back-propagation(BP) learning algorithm.Since the modeling of the beam pumping unit is very difficult by using the conventional method,the modeling of bean bump unit is chosen to examine the performance of the NEI-NN.The experiment results show that the optimized structure and learning speed of NEI-NN are better than those of the conventional neural network.