期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD
1
作者 胡长晖 路小波 +1 位作者 杜一君 陈伍军 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期395-399,共5页
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl... A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices. 展开更多
关键词 direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
下载PDF
Kernel Model Applied in Kernel Direct Discriminant Analysis for the Recognition of Face with Nonlinear Variations 被引量:1
2
作者 李粉兰 徐可欣 《Transactions of Tianjin University》 EI CAS 2006年第2期147-152,共6页
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it... A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models. 展开更多
关键词 face recognition kernel method: kernel direct discriminant analysis direct linear discriminant analysis
下载PDF
基于DCT融合2DPCA与DLDA的人脸识别 被引量:4
3
作者 张君昌 苏迎春 徐振华 《计算机仿真》 CSCD 北大核心 2009年第8期192-194,203,共4页
传统的基于主成分分析的人脸识别需要将图像矩阵转化为向量,特征提取需要花费大量时间。二维主成分分析直接利用图像矩阵,特征提取速度快,但特征数量大,影响分类速度。因此,提出了一种基于离散余弦变换(DCT)的二维主成分分析(2DPCA)和... 传统的基于主成分分析的人脸识别需要将图像矩阵转化为向量,特征提取需要花费大量时间。二维主成分分析直接利用图像矩阵,特征提取速度快,但特征数量大,影响分类速度。因此,提出了一种基于离散余弦变换(DCT)的二维主成分分析(2DPCA)和直接线性判决分析(DLDA)结合的人脸识别方法。算法首先用DCT对人脸图像进行压缩并重建,然后利用2DPCA和DLDA对人脸图像进行特征提取,最后选用最近邻分类器进行分类。在ORL人脸库上的测试结果表明,与DL-DA或2DPCA算法相比,算法具有更高的识别率。 展开更多
关键词 人脸识别 离散余弦变换 直接线性判决分析 二维主成分分析
下载PDF
基于direct LDA的幅度谱子空间雷达目标识别 被引量:3
4
作者 刘敬 张军英 赵峰 《系统工程与电子技术》 EI CSCD 北大核心 2008年第10期1815-1818,共4页
针对高分辨距离像(HRRP)可分性低和维数高的问题,提出一种新的雷达自动目标识别(RATR)方法:dLDA&SVM。先采用直接线性判别分析在HRRP的幅度谱空间进行特征提取,然后在子空间中采用角域均值模板库训练one-against-all支撑向量机(SVM... 针对高分辨距离像(HRRP)可分性低和维数高的问题,提出一种新的雷达自动目标识别(RATR)方法:dLDA&SVM。先采用直接线性判别分析在HRRP的幅度谱空间进行特征提取,然后在子空间中采用角域均值模板库训练one-against-all支撑向量机(SVM)多类分类器进行目标识别。并设计了最短距离分类器与SVM分类器比较。基于外场实测数据的实验结果表明,与LDA幅度谱子空间法,幅度谱原空间法相比,dLDA&SVM可显著降低数据维数并提高识别性能。 展开更多
关键词 雷达自动目标识别 特征提取 直接线性判别分析 高分辨距离像 支持向量机
下载PDF
基于矩阵分解的DLDA特征抽取方法分析
5
作者 孔媛媛 刘飞 +1 位作者 张家超 杨习贝 《计算机应用与软件》 CSCD 2010年第5期45-47,54,共4页
提出两种基于矩阵分解的DLDA特征抽取算法。通过引入QR分解和谱分解(SF)两种矩阵分析方法,在DLDA鉴别准则下,对散布矩阵实现降维,从而得到描述人脸图像样本更有效和稳定的分类信息。该方法通过对两种矩阵分解过程的分析,证明在传统Fishe... 提出两种基于矩阵分解的DLDA特征抽取算法。通过引入QR分解和谱分解(SF)两种矩阵分析方法,在DLDA鉴别准则下,对散布矩阵实现降维,从而得到描述人脸图像样本更有效和稳定的分类信息。该方法通过对两种矩阵分解过程的分析,证明在传统Fisher鉴别分析方法中,矩阵分解同样可以模拟PCA过程对样本进行降维,从而克服了小样本问题。在ORL人脸数据库上的实验结果验证了该算法的有效性。 展开更多
关键词 特征抽取 直接线性鉴别分析 矩阵分解 小样本问题 人脸识别
下载PDF
核Direct LDA子空间高光谱影像地物分类
6
作者 刘敬 《计算机科学》 CSCD 北大核心 2012年第6期274-277,共4页
为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA... 为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。 展开更多
关键词 地物分类 非线性可分性特征 核直接线性判别分析 高光谱影像
下载PDF
基于Direct LDA的相关向量机遥感图像分类 被引量:3
7
作者 李斌 程丹 李星 《信息技术》 2017年第4期17-20,共4页
相关向量机是一种新型的基于贝叶斯统计学习框架的有监督机器学习算法,但是存在对高光谱数据分类精度不高的问题。针对此问题,文中提出了一种改进的算法,该算法将直接线性判别分析法与相关向量机相结合,对高光谱数据进行特征提取,然后... 相关向量机是一种新型的基于贝叶斯统计学习框架的有监督机器学习算法,但是存在对高光谱数据分类精度不高的问题。针对此问题,文中提出了一种改进的算法,该算法将直接线性判别分析法与相关向量机相结合,对高光谱数据进行特征提取,然后采用相关向量机进行遥感图像分类。文中实验数据采用1992年Indian Pines高光谱数据。实验结果显示,与采用相关向量机直接分类,线性判别分析法(LDA)与相关向量机结合的两种方法的分类结果相比,文中算法能够明显降低数据维度,总体分类精度也提升了约1%。 展开更多
关键词 相关向量机 高光谱遥感图象分类 降维 直接线性判别分析
下载PDF
对称DLDA及其在人脸识别中的应用
8
作者 何振学 张贵仓 +2 位作者 孔波 杨鹏斐 王济深 《科学技术与工程》 北大核心 2013年第21期6294-6298,共5页
针对直接线性鉴别分析(DLDA)没有有效利用人脸对称性特征,及其在人脸识别中训练样本不足的问题,依据人脸较为明显的镜像对称性,结合该特性在直接线性鉴别分析的基础上提出对称直接线性鉴别分析方法。采用镜像变换得到奇对称样本和偶对... 针对直接线性鉴别分析(DLDA)没有有效利用人脸对称性特征,及其在人脸识别中训练样本不足的问题,依据人脸较为明显的镜像对称性,结合该特性在直接线性鉴别分析的基础上提出对称直接线性鉴别分析方法。采用镜像变换得到奇对称样本和偶对称样本,再分别提取各奇偶对称样本特征分量,最后采用最小欧氏距离进行分类。通过在ORL和YALE人脸数据库上的实验证明,该算法不仅有效利用了镜像样本,扩大了训练样本容量;而且取得了比直接线性鉴别分析更好的识别性能。 展开更多
关键词 人脸识别 特征提取 镜像对称性 直接线性鉴别分析 对称直接线性鉴别分析
下载PDF
直接LDA在人脸识别中的鉴别力分析 被引量:7
9
作者 赵武锋 沈海斌 严晓浪 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第8期1479-1483,共5页
直接线性鉴别分析(DLDA)曾被声明利用类内离散矩阵零空间内外所有鉴别信息,为了分析声明的理论缺陷,对DLDA在人脸识别中的鉴别特性进行了研究.鉴于DLDA是在类间离散矩阵列空间中寻找最优解,理论分析从下面3方面内容展开:类间和类内离散... 直接线性鉴别分析(DLDA)曾被声明利用类内离散矩阵零空间内外所有鉴别信息,为了分析声明的理论缺陷,对DLDA在人脸识别中的鉴别特性进行了研究.鉴于DLDA是在类间离散矩阵列空间中寻找最优解,理论分析从下面3方面内容展开:类间和类内离散矩阵的列空间之间的关系、类间离散矩阵列空间与类内离散矩阵零空间的关系以及在保留全部鉴别矢量下的DLDA特性,结果表明,在小样本条件下,DLDA几乎没利用零空间内的信息,导致一些有用的鉴别信息的丢失;若保留全部的鉴别矢量,DLDA退化为类间离散矩阵的保留所有非零成分的主成分分析.在人脸数据库ORL和YALE上的比较实验结果显示:DLDA的识别率都次于其它几种线性鉴别分析扩展方法,与理论分析一致. 展开更多
关键词 人脸识别 主成分分析 线性鉴别分析 直接线性鉴别分析 小样本
下载PDF
基于双向二维直接线性判别分析的人脸表情识别 被引量:3
10
作者 郑秋梅 吕兴会 时公喜 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期179-182,共4页
提出基于双向二维直接线性判别分析的人脸表情识别新算法。新算法从水平和垂直两个方向对图像矩阵执行直接线性判别分析,从二维图像中提取图像协方差矩阵,降低特征维数,减少表示图像时所需要的系数及其存储空间。另外,不使用奇异值分解... 提出基于双向二维直接线性判别分析的人脸表情识别新算法。新算法从水平和垂直两个方向对图像矩阵执行直接线性判别分析,从二维图像中提取图像协方差矩阵,降低特征维数,减少表示图像时所需要的系数及其存储空间。另外,不使用奇异值分解方法,便可得到图像协方差矩阵的特征向量,能够精确地估计图像协方差矩阵。在JAFFE人脸表情数据库中的试验结果表明,所提算法具有较高的识别率。 展开更多
关键词 计算机应用 图像识别 人脸表情识别 直接线性判别分析 双向二维直接线性判别分析
下载PDF
基于2D-PCA的两级LDA人脸识别方法 被引量:3
11
作者 王友钊 潘芬兰 黄静 《计算机工程》 CAS CSCD 2014年第9期243-247,共5页
线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以... 线性鉴别分析(LDA)小样本问题的已有解决方法在构造最优投影子空间时未完整利用LDA的4个信息空间,为此,提出一种基于二维主成分分析(2D-PCA)的两级LDA人脸识别方法。采用减法运算对样本类内散度矩阵和类间散度矩阵的特征值矩阵求逆,以解决小样本问题,并连续应用Fisher准则和修改后的Fisher准则连接2个投影子空间,获取包含LDA的4个信息空间的最优投影方向,利用2D-PCA对输入样本做预处理,以减少计算复杂度。在ORL和YALE人脸库上的实验结果表明,该方法虽然训练时间略有增加,但识别率分别为92.5%和95.8%,优于其他常用LDA算法。 展开更多
关键词 线性鉴别分析 直接线性鉴别分析 二维主成分分析 小样本问题 人脸识别 特征提取
下载PDF
基于改进ISOMAP算法的图像分类 被引量:3
12
作者 魏宪 李元祥 +2 位作者 赵海涛 庹红娅 许鹏 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期911-915,共5页
利用基于邻域的图像欧氏距离寻找最近邻,并用直接线性判别分析方法(Direct LDA)取代多维尺度分析法(MDS),提出一种改进的等距特征映射(ISOMAP)算法(KIMD-ISOMAP)进行降维.人脸图像分类试验表明:KIMD-ISOMAP提高了ISOMAP的分类能力,扩展... 利用基于邻域的图像欧氏距离寻找最近邻,并用直接线性判别分析方法(Direct LDA)取代多维尺度分析法(MDS),提出一种改进的等距特征映射(ISOMAP)算法(KIMD-ISOMAP)进行降维.人脸图像分类试验表明:KIMD-ISOMAP提高了ISOMAP的分类能力,扩展了邻域半径的选取范围,在加高斯噪声和几何形变的情况下,该算法与其他方法相比,表现出较强的鲁棒性. 展开更多
关键词 流形学习 等距特征映射 直接线性判别 图像欧氏距离 降维
下载PDF
基于子模式双向二维线性判别分析的人脸识别 被引量:4
13
作者 董晓庆 陈洪财 《液晶与显示》 CAS CSCD 北大核心 2015年第6期1016-1023,共8页
针对表情和光照变化等对人脸识别影响的问题,提出一种基于子模式双向二维线性判别分析(Sub-pattern two-directional two-dimensional linear discriminant analysis,Sp-(2D)2 LDA)的人脸识别方法。该方法首先对原图像进行分块处理,并... 针对表情和光照变化等对人脸识别影响的问题,提出一种基于子模式双向二维线性判别分析(Sub-pattern two-directional two-dimensional linear discriminant analysis,Sp-(2D)2 LDA)的人脸识别方法。该方法首先对原图像进行分块处理,并保持子块间的空间关系,然后对各个子训练样本集从行方向和列方向同时利用2DLDA进行特征抽取,最后把各个子特征矩阵拼接成一对应原始图像的特征矩阵,并采用最近邻分类器进行分类识别。在ORL及Yale人脸库上的试验结果表明,Sp-(2D)2 LDA有效降低了鉴别特征的维数,减少了表情和光照变化的影响,获得了较好的识别性能。 展开更多
关键词 人脸识别 特征抽取 双向二维线性判别分析 子模式双向二维线性判别分析
下载PDF
综合时频域及核判别分析的两级特征提取新方法 被引量:2
14
作者 孙贤明 樊晓光 +2 位作者 禚真福 丛伟 陈少华 《计算机工程与应用》 CSCD 北大核心 2018年第3期115-119,141,共6页
为了解决模拟电路软故障诊断中特征提取不全面准确的问题,提出了一种基于综合时频域及核判别分析的两级特征提取新方法。首先,对采集到的故障响应信号分别提取均值、方差等时域统计特征和小波包分解后不同频带的能量作为频域特征;然后,... 为了解决模拟电路软故障诊断中特征提取不全面准确的问题,提出了一种基于综合时频域及核判别分析的两级特征提取新方法。首先,对采集到的故障响应信号分别提取均值、方差等时域统计特征和小波包分解后不同频带的能量作为频域特征;然后,通过核判别分析方法对故障特征进一步优选,从而保证故障特征的准确有效性;最后,将所得到的最优故障特征输入支持向量机进行故障诊断。对Sallen-Key带通滤波器电路的仿真实验结果表明,该方法能够很好地反映故障响应信号的本质特征,有效提高故障诊断的性能。 展开更多
关键词 模拟电路软故障诊断 特征提取 小波包能量谱 时域统计特征 核判别分析 有向无环图支持向量机
下载PDF
方向滤波器组预处理方法在人脸识别中的应用 被引量:1
15
作者 高攀 赵恒斌 +2 位作者 米珍美 钱宇珊 郭理 《石河子大学学报(自然科学版)》 CAS 北大核心 2018年第6期768-773,共6页
为了解决在不同受控条件下识别人脸图像存在识别率较低的问题,本文提出使用带方向滤波器组预处理的人脸识别方法。首先,单独使用主成分分析、独立成分分析和线性判别分析3种人脸识别算法对人脸进行识别,然后使用方向滤波器组对人脸先进... 为了解决在不同受控条件下识别人脸图像存在识别率较低的问题,本文提出使用带方向滤波器组预处理的人脸识别方法。首先,单独使用主成分分析、独立成分分析和线性判别分析3种人脸识别算法对人脸进行识别,然后使用方向滤波器组对人脸先进行预处理,再结合3种算法对人脸进行识别。为了证明所提出方法的普适性,本文使用Yale人脸数据库和FERET人脸数据库2个不同的数据库进行了相同的实验。实验结果表明:本文所提的方法明显改进了识别效率,识别率提高了8.91%-49.99%,其中线性判别分析算法更是获得94.21%的识别率。 展开更多
关键词 人脸识别 方向滤波器组 主成分分析 独立成分分析 线性判别分析
下载PDF
不同规模数据集下的人脸识别方法(英文)
16
作者 刘瑾 张乐石 徐可欣 《纳米技术与精密工程》 EI CAS CSCD 2007年第3期164-168,共5页
系统研究了类内变化和类数目增加所引起的人脸识别中的非线性识别问题,并比较了线性识别方法和非线性识别方法在不同用户集规模下的适用性.采用CAS-PEAL大型人脸数据库中的表情集(330人)和姿势集(1 000人)进行了3组实验.实验结果表明:... 系统研究了类内变化和类数目增加所引起的人脸识别中的非线性识别问题,并比较了线性识别方法和非线性识别方法在不同用户集规模下的适用性.采用CAS-PEAL大型人脸数据库中的表情集(330人)和姿势集(1 000人)进行了3组实验.实验结果表明:当训练集的人数在300人(表情集)以内时,增加类内的变化不会对线性识别方法造成影响,并可以提高识别的准确率;但是,当保持类内图片数不变而增加类的数目时,类数(人数)增加对线性方法和非线性方法产生了不同的影响.随着人数增加,线性识别方法的识别准确率逐渐降低,而基于核方法的非线性方法却能够一直保持识别准确率的稳定.因此,应该根据类的总数合理地选择识别方法,并合理地设计类内的图片数,这样有助于提高人脸识别系统的识别率.同时,实验也验证了基于核方法(kernel)的非线性人脸识别方法更适宜于人数规模较大的情况. 展开更多
关键词 主成分分析法 直接线性判别分析 核直接线性判别分析 非线性 核方法
下载PDF
基于QR分解的鉴别维数压缩及其在人脸识别中的应用
17
作者 杨静宇 郑宇杰 《智能系统学报》 2007年第6期48-53,共6页
维数压缩是当前模式识别研究领域中的一个重要研究方向.但是当前部分维数压缩方法缺乏有效的鉴别信息保留机制,并且在利用Fisher鉴别准则的时候经常会遇到小样本问题.简单介绍了维数压缩中的鉴别信息保留,并且提出了一种新的直接线性鉴... 维数压缩是当前模式识别研究领域中的一个重要研究方向.但是当前部分维数压缩方法缺乏有效的鉴别信息保留机制,并且在利用Fisher鉴别准则的时候经常会遇到小样本问题.简单介绍了维数压缩中的鉴别信息保留,并且提出了一种新的直接线性鉴别分析方法——DLDA/QR算法.该方法首先利用矩阵的QR分解算法实现目标函数的优化,再在一个较小的空间内实现有效鉴别信息的提取.在ORL人脸数据库上的实验结果验证了算法的有效性. 展开更多
关键词 鉴别维数压缩 模式识别 QR分解 直接线性鉴别分析
下载PDF
隐空间中参数化直接鉴别分析及其应用
18
作者 张燕 郑玮 胡勇 《计算机工程与应用》 CSCD 北大核心 2011年第6期212-215,共4页
提出了一种新的非线性特征抽取方法——隐空间中参数化直接鉴别分析。其主要思想是利用一核函数将原始输入空间非线性变换到隐空间,针对在该隐空间中类内散布矩阵总是奇异等问题,利用参数化直接鉴别分析进行特征抽取。与现有的核特征抽... 提出了一种新的非线性特征抽取方法——隐空间中参数化直接鉴别分析。其主要思想是利用一核函数将原始输入空间非线性变换到隐空间,针对在该隐空间中类内散布矩阵总是奇异等问题,利用参数化直接鉴别分析进行特征抽取。与现有的核特征抽取方法不同的是,该方法不需要核函数满足Mercer定理,从而增加了核函数的选择范围。更为重要的是,由于在隐空间中采用了参数化直接鉴别分析,不仅保留了参数化直接鉴别分析的优点,而且有效地抽取了样本的非线性特征;在该方法中提出了一个更为合理的加权系数矩阵,提高了分类性能。在FERET人脸数据库子库上的实验结果验证了该方法的有效性。 展开更多
关键词 隐空间 直接鉴别分析 加权系数 特征抽取
下载PDF
基于二进制传感器网络的目标运动方向估计方法
19
作者 邢思锐 邢昌风 《火力与指挥控制》 CSCD 北大核心 2010年第11期188-191,共4页
介绍了方向估计二进制传感器网络(DE-BSN),提出基于统计学习解决目标运动方向估计的思路,并给出了使用线性判别分析法(LDA)和支持向量机算法(SVM)的估计方案。仿真分析了在不同传感器节点密度时上述算法的精度、和在节点出现错误的情况... 介绍了方向估计二进制传感器网络(DE-BSN),提出基于统计学习解决目标运动方向估计的思路,并给出了使用线性判别分析法(LDA)和支持向量机算法(SVM)的估计方案。仿真分析了在不同传感器节点密度时上述算法的精度、和在节点出现错误的情况下算法对目标方向估计的可靠性。实验结果表明上述算法均可实现高精度的目标方向估计,并都具有一定的鲁棒性,各自的优势分别在于:LDA的计算复杂度较小,而SVM的估计误差较小。 展开更多
关键词 方向估计二进制传感器网络 统计学习 支持向量机 线性判别分析
下载PDF
一种基于运动分析的步态识别方法 被引量:1
20
作者 苏菡 黄凤岗 洪文 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第3期418-422,共5页
步态识别是新近发展的一种用在身份识别、视频监控等场合的生物特征识别技术.文中提出了一种基于运动分析的步态识别方法,采用线性判别分析和离散余弦变换分析从图像序列中提取的步态特征.采用背景减除技术提取了侧影,利用侧影的宽高变... 步态识别是新近发展的一种用在身份识别、视频监控等场合的生物特征识别技术.文中提出了一种基于运动分析的步态识别方法,采用线性判别分析和离散余弦变换分析从图像序列中提取的步态特征.采用背景减除技术提取了侧影,利用侧影的宽高变化进行了步态周期分析及行走方向判断;采用一种通过分析侧影宽度变化获取角度信息的肢体角度提取方法获取了步态序列特征;用类间散布矩阵和类内散布矩阵对应的行列式的比值确定特征个数,并采用线性判别分析和离散余弦变换分析了步态特征.在几个常用数据库上进行了实验结果表明,该方法行之有效. 展开更多
关键词 步态识别 运动分析 线性判别分析 离散余弦变换 方向判断
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部