A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl...A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.展开更多
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it...A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models.展开更多
为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA...为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。展开更多
基金The National Natural Science Foundation of China (No.61374194)
文摘A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices.
文摘A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models.
文摘为降低高光谱影像的数据维数,提高地物分类识别效率,提出了一种地物分类方法——核直接线性判别分析(Kernel Direct Linear Discriminant Analysis,KDLDA)子空间法;并推导出类先验概率的一般形式下KDLDA的解。KDLDA子空间法先采用KDLDA提取遥感影像的非线性可分特征,然后在KDLDA子空间采用最小距离分类器进行分类识别。机载可见光/红外成像光谱仪(Airborne Visible/Infrared Imaging Spectrometer,AVIRIS)的高光谱影像识别结果表明,相比原空间法、LDA子空间法、直接线性判别分析(Direct Linear Discriminant Analysis,DLDA)子空间法、核线性判别分析(Kernel Linear Discriminant Analysis,KLDA)子空间法,KDLDA子空间法可显著提高识别效率。