Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac...Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.展开更多
General principle and layout of the prototype machine is introduced. Primary results of producing a metal vase to investigate the proper selection of numerous technical parameters are presented.
The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- wa...The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- ware and software development, use of materials, applications, market growth and its development prospects. Focused presentations of Direct Digital Manufacturing (additive manufacturing) compared to traditional mechani- cal manufacturing industry in the use of prices, processing speed, reliability and cost advantages and characteris- tics. Particularly the significant challenges and competitiveness of Direct Digital Manufacturing technology in the processing of any complexity created directly the number of objects, internal structure and channel function, as well as the shape of the chassis components and structure of the matching and optimization.展开更多
The frequent defects of the metal parts, such as non-fully melting, thermal strain, and balling, which are produced by selective laser melting (SLM) that is a novel method of one-step manufacturing, are analyzed the...The frequent defects of the metal parts, such as non-fully melting, thermal strain, and balling, which are produced by selective laser melting (SLM) that is a novel method of one-step manufacturing, are analyzed theoretically and experimentally. The processing parameters significantly affect the quality of the final parts, and simultaneously, the appropriate laser mode and the special scanning strategy assure a satisfying quality of the final parts. The SLM experiment is carried out using Cu-based powder. The metal part is divided into several scanned regions, each of which is scanned twice at the cross direction with different scanning speeds. The microstructure is analyzed on microscope. The results show that the part is metallurgically bonded entity with a relative density of 95%, and the microstructure is composed of equiaxial crystal and dendritic crystal whose distributions are mainly decided by the scanning strategy.展开更多
Bioinspired Multi-Metal Structures(MMSs)combine distinct properties of multiple materials,benefiting from improved properties and providing superior designs.Additive Manufacturing(AM)exhibits enormous advantages in ap...Bioinspired Multi-Metal Structures(MMSs)combine distinct properties of multiple materials,benefiting from improved properties and providing superior designs.Additive Manufacturing(AM)exhibits enormous advantages in applying different materials and geometries according to the desired functions at specific locations of the structure,having great potential in fabricating multi-materials structures.However,current AM techniques have difficulty manufacturing 3D MMSs without material cross-contamination flexibly and reliably.This study demonstrates a reliable,fast,and flexible direct ink writing method to fabricate 3D MMSs.The in-situ material-switching system enables the deposition of multiple metallic materials across different layers and within the same layer.3D Fe-Cu MMSs with complex geometries and fine details are fabricated as proof of concept.The microstructures,chemical and phase compositions,and tensile fracture surfaces of the Fe-Cu interfaces indicate a well-bonded interface without cracks,delamination,or material cross-contamination.We envision this novel method making other metallic combinations and even metal-ceramic components.It paves the way for manufacturing 3D MMSs using AM and establishes the possibilities of numerous MMSs applications in engineering fields.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos:52305502,U23B6005,52293405)China Postdoctoral Science Foundation(Grant No:2023M732788)the Postdoctoral Research Project of Shaanxi Province.
文摘Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.
基金Supported by the Natural Science Foundation of China (50075032) and State High-Technology Development Program of China (2001AA421150)
文摘General principle and layout of the prototype machine is introduced. Primary results of producing a metal vase to investigate the proper selection of numerous technical parameters are presented.
文摘The paper introduces the origin of the word of Direct Digital Manufacturing and other forms of address, and the working principles of Direct Digital Manufacturing technology and major types of the technology, hard- ware and software development, use of materials, applications, market growth and its development prospects. Focused presentations of Direct Digital Manufacturing (additive manufacturing) compared to traditional mechani- cal manufacturing industry in the use of prices, processing speed, reliability and cost advantages and characteris- tics. Particularly the significant challenges and competitiveness of Direct Digital Manufacturing technology in the processing of any complexity created directly the number of objects, internal structure and channel function, as well as the shape of the chassis components and structure of the matching and optimization.
文摘The frequent defects of the metal parts, such as non-fully melting, thermal strain, and balling, which are produced by selective laser melting (SLM) that is a novel method of one-step manufacturing, are analyzed theoretically and experimentally. The processing parameters significantly affect the quality of the final parts, and simultaneously, the appropriate laser mode and the special scanning strategy assure a satisfying quality of the final parts. The SLM experiment is carried out using Cu-based powder. The metal part is divided into several scanned regions, each of which is scanned twice at the cross direction with different scanning speeds. The microstructure is analyzed on microscope. The results show that the part is metallurgically bonded entity with a relative density of 95%, and the microstructure is composed of equiaxial crystal and dendritic crystal whose distributions are mainly decided by the scanning strategy.
基金National Natural Science Foundation of China,China(Grant ID:52105343 and 52021003)China Postdoctoral Science Foundation,China(Grant ID:2021M701387 and 2022T150259)Department of Science and Technology of Jilin Province,China(Grant ID:2020122214JC).
文摘Bioinspired Multi-Metal Structures(MMSs)combine distinct properties of multiple materials,benefiting from improved properties and providing superior designs.Additive Manufacturing(AM)exhibits enormous advantages in applying different materials and geometries according to the desired functions at specific locations of the structure,having great potential in fabricating multi-materials structures.However,current AM techniques have difficulty manufacturing 3D MMSs without material cross-contamination flexibly and reliably.This study demonstrates a reliable,fast,and flexible direct ink writing method to fabricate 3D MMSs.The in-situ material-switching system enables the deposition of multiple metallic materials across different layers and within the same layer.3D Fe-Cu MMSs with complex geometries and fine details are fabricated as proof of concept.The microstructures,chemical and phase compositions,and tensile fracture surfaces of the Fe-Cu interfaces indicate a well-bonded interface without cracks,delamination,or material cross-contamination.We envision this novel method making other metallic combinations and even metal-ceramic components.It paves the way for manufacturing 3D MMSs using AM and establishes the possibilities of numerous MMSs applications in engineering fields.