期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
STUDY ON THE VARIATION MECHANISM OF CARBON CONTENT OF LIQUID IRON IN MELTING GASIFIER
1
作者 Q.Lu L.F Sun +1 位作者 Y.Xu Q.F.Chan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第2期132-138,共7页
This paper studied the changing principles of carbon content in direct reduction iron (DRI) and liquid iron in the COREX melting gasifier. Under the normal working conditions of experimental equipment, liquid nitrogen... This paper studied the changing principles of carbon content in direct reduction iron (DRI) and liquid iron in the COREX melting gasifier. Under the normal working conditions of experimental equipment, liquid nitrogen was poured into the melting gasifier from its tuyere to cool down quickly. And then seven cross sections were made to study the carburization reaction and its characteristics of the solid iron and the liquid iron, and also the reaction of carbon between the slag and the metal. According to the results, the influences of the thickness of the semi-coke layer and the temperature on the carbon content of liquid iron in the COREX melting gasifier were confirmed. 展开更多
关键词 melting gasifier direct reduction iron (DRI) liquid iron carbon content
下载PDF
Effects of embedding direct reduction followed by magnetic separation on recovering titanium and iron of beach titanomagnetite concentrate 被引量:10
2
作者 Chao Geng Ti-chang Sun +2 位作者 You-wen Ma Cheng-yan Xu Hui-fen Yang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第2期156-164,共9页
Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of... Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained. 展开更多
关键词 Titanomagnetite concentrate direct reduction reduction condition direct reduction iron powder Magnetic separation
原文传递
Effect of Sodium Sulfate on Direct Reduction of Beach Titanomagnetite for Separation of Iron and Titanium 被引量:8
3
作者 En-xia GAO Ti-chang SUN +2 位作者 Zhi-guo LIU Chao GENG Cheng-yan XU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期428-433,共6页
The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 co... The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains. 展开更多
关键词 beach titanomagnetite sodium sulfate direct reduction separation iron titanium
原文传递
Effects of CaO on Precipitation Morphology of Metallic Iron in Reduction of Iron Oxides Under CO Atmosphere 被引量:6
4
作者 ZHAO Zhi-long TANG Hui-qing GUO Zhan-cheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第7期16-24,共9页
Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution we... Growth process of iron whiskers and mechanism of CaO influence on precipitation morphology of metallic iron at the gas-solid interfaces was studied. Analytical reagents of Fe(NO3)3 and Ca(NO3)2 aqueous solution were used to prepare sheet film sample of Fe2 O3-CAO by thermal decomposition at high temperature. In-situ observation was con-ducted using a stereo optical microscope and a hot-stage. And reduction kinetics of samples was studied by thermo gravimetrie (TG) method. Some samples after reduction were analyzed by using the scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and fourier transform infrared (FT-IR) spectrometer. Results indi-cate that during the reduction of iron oxides with CO, metallic iron is mostly precipitated as whisker and the precipi- tation behavior mainly depends on reduction rate. Doping CaO can significantly increase the reduction rate and effec-tively change the precipitation morphology of metallic iron after the reduction. When CaO doping concentration is less than 4% (mass percent), CaO can promote whisker formation of reduced iron; as it reaches 6% (mass per- cent), CaO inhibits iron whiskers growth; as it is more than 8% (mass percent), no whiskers could be observed. Therefore, controlling the quantity of Ca^2+ is effective to control the formation and growth of iron whiskers during gaseous reduction and thus eliminating ore grain sticking caused by intertexture of iron whiskers. 展开更多
关键词 stereo optical microscopes in-situ observations gaseous direct reductions iron whiskers sticking
原文传递
Direct reduction of hematite powders in a fluidized bed reactor 被引量:8
5
作者 Qingshan Zhu Rongfang Wua Hongzhong Li 《Particuology》 SCIE EI CAS CSCD 2013年第3期294-300,共7页
Ultrafine hematite powder was reduced to produce ultrafine iron powder in a 50%Ar-50%H2 atmosphere at 450-550 ℃ in a fluidized bed reactor. The ultrafine hematite powder shows the typical agglomerating fluidization b... Ultrafine hematite powder was reduced to produce ultrafine iron powder in a 50%Ar-50%H2 atmosphere at 450-550 ℃ in a fluidized bed reactor. The ultrafine hematite powder shows the typical agglomerating fluidization behavior with large agglomerates fluidized at the bottom of the bed and small agglomerates fluidized at the upper part of the bed. It was found that defluidization occurred even at the low temperature of 450 C with low metallization rate. Defluidization was attributed mainly to the sintering of the newly formed iron particles. Granuation was employed to improve the fluidization quality and to tackle the defluidization problem, where granules fluidized like a Geldart's group A powder. Granulation was found to effectively reduce defluidization during reduction, without however sacrificing reduction speed. The asreduced iron powders from both the ultrafine and the granulated hematite exhibited excellent sintering activity, that is, fast sintering at temperature of as low as ~580℃, which is much superior as compared to that of nano/ultrafine iron powders made by other processes. 展开更多
关键词 direct reduction Granulation Defluidization Sintering Ultrafine iron powder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部