Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composi...Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composition not only enhances magnetic properties, but also changes texture direction of the ribbon. Low temperature heat treatment can increase the magnetic properties to some extent, and high temperature annealing decreases the magnetic properties. Both low and high temperature heat treatment have effects on grain orientation, but the difference still exists between the two surfaces of the ribbon. So it is infeasibility to prepare anisotropic Nd_2Fe_ 14B/α-Fe nanocomposite magnets by direct melt spinning.展开更多
Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with diffe...Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.展开更多
(ZrB2+Al2O3+Al3Zr)/A356 composites were synthesized by melt direct reaction from A356-(K2ZrF6+KBF4+Na2B4O7) system.The phase compositions and the microstructures of the as-prepared composites were investigated...(ZrB2+Al2O3+Al3Zr)/A356 composites were synthesized by melt direct reaction from A356-(K2ZrF6+KBF4+Na2B4O7) system.The phase compositions and the microstructures of the as-prepared composites were investigated by XRD,SEM and TEM.The results show that the reinforcements are composed of ZrB2 and Al2O3 ceramic phase particles and Al3Zr intermetallic particles.The ZrB2 particulates are easy to join together to form some particle clusters and distribute along the α(Al) grain boundary.The morphologies of the ZrB2 particulates are in hexagon-shape with the size of about 50 nm.The TEM investigation results of Al3Zr indicate that Al3Zr grows in the form of facet with the length-diameter ratio of about 20.The morphologies of Al2O3 particles are in rectangular-shape and ellipsoidal-shape,with the size of about 0.1 μm.In addition,the interfaces of the matrix and particles are net and no interfacial outgrowth is observed.展开更多
The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the struct...The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the structure and electrochemical hydrogen storage performance of the alloys were investigated. The as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, suggesting that the addition of Nd facilitates the glass forming of the Mg2Ni-type alloys. Increasing the spinning rate from 0 to 40 m/s gives rise to the discharge capacity growing from 42.5 to 100.6 mA·h/g for the x=0 alloy and from 86.4 to 452.8 mA·h/g for the x=10 alloy. And the cycle stability (S20) rises from 40.2%to 41.1%for the x=0 alloy and from 53.2%to 89.7%for the x=10 alloy, respectively.展开更多
The purpose of this paper is to study large-sized copper billets refined with 5N ultrahigh purity after vacuum melting and directional solidifi-cation (VMDS). The precise impurity analysis of copper billets was carr...The purpose of this paper is to study large-sized copper billets refined with 5N ultrahigh purity after vacuum melting and directional solidifi-cation (VMDS). The precise impurity analysis of copper billets was carried out with a glow discharge mass spectrometer (GDMS). The re-sults demonstrate that the total concentration of twenty-two impurities is decreased by 63.1wt.%-66.5 wt.%. Ag, P, S, Na, Mg, Se, Zn, In and Bi are easy to be removed due to lgPimp - lgPCu 1.5, and they can be removed effectively under the vacuum condition of 1650-1700 K for 30 min. The electrical conductivity of 5N copper is higher than that of the raw material as the impurity concentrations decrease. The segrega-tion effect in directional solidification can be remarkable when the equilibrium distribution coefficient (k0) value is less than 0.65 due to the strong affinity of Cu for some metallic and non-metallic impurities.展开更多
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph...NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.展开更多
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat...The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.展开更多
A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/p-...A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/p-toluenesulfonic acid. In this way, the direct synthesis of copoly (lactic acid/glycolic acid) without any organic solvent was investigated. The properties and structures of products were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), X-ray diffraction and so on. The results show that comparatively high molecular weight copolymer of lactic acid and glycolic acid can be prepared by direct processing under appropriate technological conditions.展开更多
The successful fabrication of layered hybrid beads by DLM process is limited by dissimilar melting ranges of different powders.For the application of DLM process into manufacturing industries,target mechanical propert...The successful fabrication of layered hybrid beads by DLM process is limited by dissimilar melting ranges of different powders.For the application of DLM process into manufacturing industries,target mechanical properties of final product must be achieved.Process analysis was performed for the DLM fabrication of layered hybrid beads by using stainless steel (SS 316L) and titanium powders.For the analysis of fabrication characteristics,single hybrid bead was formed using SS316L powder onto the base plate and then Ti powder was melted onto the previous melted layer.In addition,multi-layer hybrid beads were fabricated for the analysis of the layering effects between them.From these studies,the effects of the processing parameters,such as laser power,scan rate and scan line spacing on surface morphology were characterized and optimum processing conditions for the DLM fabrication of layered hybrid beads were developed.展开更多
The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform.solute distribution in liquid and a quasi-steady solute distribution in solid are supposed....The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform.solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.展开更多
In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology ...In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology was used to fabricate the La_(0.75-x)M_xMg_0.25Ni_3.2Co_0.2Al_0.1 (M = Zr, Pr; x = 0, 0.1) electrode alloys. The influences of the melt spinning and substituting La with M (M = Zr, Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated. The analysis of XRD, SEM, and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La, Mg)_2Ni_7 and LaNi_5 as well as a residual phase LaNi_2 . The as-spun (M = Pr) alloy displays an entire nanocrystalline structure, while an amorphous-like structure is detected in the as-spun (M = Zr) alloy, implying that the substitution of Zr for La facilitates the amorphous formation. The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however, the Zr substitution brings on an adverse impact. Meanwhile, the M (M = Zr, Pr) substitution significantly enhances its cycle stability. The melt spinning exerts an evident effect on the electrochemical performances of the alloys, whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate, whereas their cycle stabilities monotonously augment as the spinning rate increases.展开更多
The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermod...The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.展开更多
The microstructure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy (SMA) were compared with those of initial coarse structure. The nanostructured Cu-Al-Ni ribbons were produced via rapid solidifi...The microstructure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy (SMA) were compared with those of initial coarse structure. The nanostructured Cu-Al-Ni ribbons were produced via rapid solidification using melt spinning technique. The structure and properties of both nanostructured and coarse-grain specimens were then characterized using XRD, SEM, AFM and DSC techniques. According to the obtained results, the nanostructured ribbons show one way shape memory effect. Besides, the formation of nanoparticles of γ2 (Cu9Al4) and the nanograins results in a significant decrease in the martensite-austenite transformation temperature. The produced nanostructure not only leads to a considerable increase in the recovered deformation but also results in the structure stability when it is subjected to deformation-recovery cycles.展开更多
The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contai...The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contains no B and RE.The addition of 0.11-0.31wt% B can suppress the martensitic transformation and Ni3Al separation at the boundaries,and a supersaturated B2 single phase NiAl is obtained.The addition of 0.05wt% RE can eliminate Ni3Al precipitated at the boundaries and get complete martensite,but 0.2-0.8wt% RE addition can suppress the martensitic transformation, and supersaturated B2 single phase NiAl is obtained.The formation mechanism of supersaturated B2 single phase NiAl has been analyzed.展开更多
A novel in situ reaction system Al Zr O was developed. In situ Al 3Zr and Al 2O 3 particulate reinforced A356 alloy matrix composites have been fabricated by direct melt reaction method. The results show that the maxi...A novel in situ reaction system Al Zr O was developed. In situ Al 3Zr and Al 2O 3 particulate reinforced A356 alloy matrix composites have been fabricated by direct melt reaction method. The results show that the maximum sizes of Al 3Zr and Al 2O 3 particulates synthesized in the system ZrOCl 2 A356 are 1 μm and 3 μm respectively, and they are well distributed in the matrix. The investigation shows that the Al 3Zr crystal is in the shape of polyhedron and rectangle. There is a faceted growth phenomenon on Al 3Zr crystal surface. It is firstly found that the Al 3Zr crystal grows in the mechanism of twinning. The twinning plane is (1 1 4), and the twinning direction is [2 2 1] . The crystal morphology of in situ α Al 2O 3 particulate is rectangle or sphere. Furthermore, (Al 3Zr+Al 2O 3) p/A356 composites have not only higher tensile strength at room temperature (376.2 MPa) but also higher yield strength (319.4 MPa) and higher tensile strength at elevated temperature (200 ℃) than those of the A356 alloy. The dry sliding wear test shows that the wear resistance of the (Al 3Zr+Al 2O 3) p/A356 composites is greatly enhanced with increasing particulate volume fraction.展开更多
The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electro...The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x>0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.展开更多
A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw ...A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw resonance. The results show that for shear thin fluids, the logarithm of the critical draw ratio has a well defined linear relationship with the power index for isothermal and uniform tension melt spinning. When the power index approaches zero, the critical draw ratio points at unity, indicating no melt spinning can be processed stably for such fluids. For shear thick fluids, the critical draw ratio increases in a more rapid way with increasing the power index.展开更多
An attempt was made to numerically compute the temperature profile within the melt spinning of sheath core bicomponent fibers by deriving a set of simultaneous partial differential equations. The effects of accelerati...An attempt was made to numerically compute the temperature profile within the melt spinning of sheath core bicomponent fibers by deriving a set of simultaneous partial differential equations. The effects of acceleration, gravity, and air friction on the kinetics of the polymer were included and the upper-convected Maxwell model as the constitutive equation was adopted in this model.The sheath- core bicomponent fibers were partitioned intb a serial of circular cross section and it is assumed that each circular cross section has a temperature gradient while conducting the equation of energy balance. A mathematical model was developed to describe the melt spinning of sheath-core bicomponent fibers.展开更多
The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons ...The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.展开更多
文摘Texture evolution in nanocomposite Nd_2Fe_ 14B/α-Fe magnets prepared by direct melt spinning was investigated. The free surface and wheel-contacted surface exhibit different texture direction. Modification of composition not only enhances magnetic properties, but also changes texture direction of the ribbon. Low temperature heat treatment can increase the magnetic properties to some extent, and high temperature annealing decreases the magnetic properties. Both low and high temperature heat treatment have effects on grain orientation, but the difference still exists between the two surfaces of the ribbon. So it is infeasibility to prepare anisotropic Nd_2Fe_ 14B/α-Fe nanocomposite magnets by direct melt spinning.
基金Project(50395100)supported by the National Natural Science Foundation of ChinaProject(NCET-07-0692)supported by the New Century Talents Program of the Ministry of Education,ChinaProject(34-TP-2009)supported by Open Project of State Key Laboratory of Solidification Processing,China
文摘Primary dendrite arm spacing(PDAS) of α phase in directionally solidified Pb-26%Bi(mass fraction) hypo-peritectic alloys was measured by considering the effect of melt convection in cylindrical samples with different diameters.The experimental results show the measured PDAS increases with increasing diameter of the sample.At the growth velocity of 5 μm/s,its value changes from 161.5 μm for the sample with 1.8 mm in diameter to 240.4 μm for the sample with 7 mm in diameter.The strong melt convection in large diameter samples causes a high bulk alloy composition and a high concentration gradient in peritectic β phase,resulting in a larger PDAS.Simultaneously,the high concentration gradient could effectively promote the peritectic transformation,enhancing the dissolution of the thin α dendrite.
基金Project(50971066) supported by the National Natural Science Foundation of ChinaProject(20070299004) supported by Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(2008-46) supported by Jiangsu Provincial '333' Project of training the High-level Talents Foundation,ChinaProject(BE2009127) supported by Jiangsu Provincial Science Supporting Item,China
文摘(ZrB2+Al2O3+Al3Zr)/A356 composites were synthesized by melt direct reaction from A356-(K2ZrF6+KBF4+Na2B4O7) system.The phase compositions and the microstructures of the as-prepared composites were investigated by XRD,SEM and TEM.The results show that the reinforcements are composed of ZrB2 and Al2O3 ceramic phase particles and Al3Zr intermetallic particles.The ZrB2 particulates are easy to join together to form some particle clusters and distribute along the α(Al) grain boundary.The morphologies of the ZrB2 particulates are in hexagon-shape with the size of about 50 nm.The TEM investigation results of Al3Zr indicate that Al3Zr grows in the form of facet with the length-diameter ratio of about 20.The morphologies of Al2O3 particles are in rectangular-shape and ellipsoidal-shape,with the size of about 0.1 μm.In addition,the interfaces of the matrix and particles are net and no interfacial outgrowth is observed.
基金Projects (51161015,51371094) supported by the National Natural Science Foundation of ChinaProject (2011ZD10) supported by the Natural Science Foundation of Inner Mongolia,China
文摘The nanocrystalline and amorphous Mg2Ni-type alloys with a chemical composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were fabricated by melt spinning technology. The effects of spinning rate on the structure and electrochemical hydrogen storage performance of the alloys were investigated. The as-spun Nd-free alloy displays an entire nanocrystalline structure, whereas the as-spun Nd-added alloys hold a nanocrystalline and amorphous structure, suggesting that the addition of Nd facilitates the glass forming of the Mg2Ni-type alloys. Increasing the spinning rate from 0 to 40 m/s gives rise to the discharge capacity growing from 42.5 to 100.6 mA·h/g for the x=0 alloy and from 86.4 to 452.8 mA·h/g for the x=10 alloy. And the cycle stability (S20) rises from 40.2%to 41.1%for the x=0 alloy and from 53.2%to 89.7%for the x=10 alloy, respectively.
文摘The purpose of this paper is to study large-sized copper billets refined with 5N ultrahigh purity after vacuum melting and directional solidifi-cation (VMDS). The precise impurity analysis of copper billets was carried out with a glow discharge mass spectrometer (GDMS). The re-sults demonstrate that the total concentration of twenty-two impurities is decreased by 63.1wt.%-66.5 wt.%. Ag, P, S, Na, Mg, Se, Zn, In and Bi are easy to be removed due to lgPimp - lgPCu 1.5, and they can be removed effectively under the vacuum condition of 1650-1700 K for 30 min. The electrical conductivity of 5N copper is higher than that of the raw material as the impurity concentrations decrease. The segrega-tion effect in directional solidification can be remarkable when the equilibrium distribution coefficient (k0) value is less than 0.65 due to the strong affinity of Cu for some metallic and non-metallic impurities.
基金Project(2020JJ2046)supported by the Science Fund for Hunan Distinguished Young Scholars,ChinaProject(S2020GXKJGG0416)supported by the Special Project for Hunan Innovative Province Construction,China+1 种基金Project(2018RS3007)supported by the Huxiang Young Talents,ChinaProject(GuikeAB19050002)supported by the Science Project of Guangxi,China。
文摘NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.
文摘The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.
文摘A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/p-toluenesulfonic acid. In this way, the direct synthesis of copoly (lactic acid/glycolic acid) without any organic solvent was investigated. The properties and structures of products were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), X-ray diffraction and so on. The results show that comparatively high molecular weight copolymer of lactic acid and glycolic acid can be prepared by direct processing under appropriate technological conditions.
基金Project(2012-0000-965)supported by the National Core Research Center Program through the National Research Foundation of Korea Funded by the Ministry of Education,Science and Technology
文摘The successful fabrication of layered hybrid beads by DLM process is limited by dissimilar melting ranges of different powders.For the application of DLM process into manufacturing industries,target mechanical properties of final product must be achieved.Process analysis was performed for the DLM fabrication of layered hybrid beads by using stainless steel (SS 316L) and titanium powders.For the analysis of fabrication characteristics,single hybrid bead was formed using SS316L powder onto the base plate and then Ti powder was melted onto the previous melted layer.In addition,multi-layer hybrid beads were fabricated for the analysis of the layering effects between them.From these studies,the effects of the processing parameters,such as laser power,scan rate and scan line spacing on surface morphology were characterized and optimum processing conditions for the DLM fabrication of layered hybrid beads were developed.
基金The research is funded by the National Natural Science FOundation of China! (No.59931030)
文摘The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform.solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.
基金supported by the National Natural Science Foundation of China(Nos.51161015 and 50961009)the National High-Technology Research and Development Program of China(No.2011AA03A408)the Natural Science Foundation of Inner Mongolia,China(Nos.2011ZD10 and 2010ZD05)
文摘In order to ameliorate the electrochemical hydrogen storage performances of La-Mg–Ni system A_2B_7-type electrode alloys, the partial substitution of M (M = Zr, Pr) for La was performed. The melt spinning technology was used to fabricate the La_(0.75-x)M_xMg_0.25Ni_3.2Co_0.2Al_0.1 (M = Zr, Pr; x = 0, 0.1) electrode alloys. The influences of the melt spinning and substituting La with M (M = Zr, Pr) on the structures and the electrochemical hydrogen storage characteristics of the alloys were investigated. The analysis of XRD, SEM, and TEM reveals that the as-cast and spun alloys have a multiphase structure composed of two main phases (La, Mg)_2Ni_7 and LaNi_5 as well as a residual phase LaNi_2 . The as-spun (M = Pr) alloy displays an entire nanocrystalline structure, while an amorphous-like structure is detected in the as-spun (M = Zr) alloy, implying that the substitution of Zr for La facilitates the amorphous formation. The electrochemical measurements exhibit that the substitution of Pr for La clearly increases the discharge capacity of the alloys; however, the Zr substitution brings on an adverse impact. Meanwhile, the M (M = Zr, Pr) substitution significantly enhances its cycle stability. The melt spinning exerts an evident effect on the electrochemical performances of the alloys, whose discharge capacity and high rate discharge ability (HRD) first mount up and then fall with the growing spinning rate, whereas their cycle stabilities monotonously augment as the spinning rate increases.
基金financial supports from the Inner Mongolia Natural Science Foundation,China (No.2019BS05005)the Inner Mongolia University of Science and Technology Innovation Fund,China (No.2019QDL-B11)the National Natural Science Foundation of China (Nos.51901105, 51871125, 51761032).
文摘The as-spun Ti_(1−x)La_(x)Fe_(0.8)Mn_(0.2)(x=0,0.01,0.03,0.06,0.09,molar fraction)alloys were prepared by melt spinning.The effects of La substitution for Ti on the microstructure,hydrogen storage kinetics and thermodynamics of TiFe-type Ti−Fe−Mn-based alloy were investigated.The as-spun alloys hold the TiFe single phase,which transforms to TiFeH_(0.06),TiFeH,and TiFeH_(2) hydrides after hydrogenation.La substitution promotes the formation of micro-defects(such as dislocations and grain boundaries)in the alloys,thus facilitating hydrogen diffusion.In addition,the hydrogen storage kinetics properties are improved after introducing La element.With the rise of La content,the hydrogen storage capacity decreases firstly and then increases,but the absolute value of hydriding enthalpy change(|ΔH|)increases firstly and then reduces.When x=0.01,the maximum value of|ΔH|is obtained to be(25.23±0.50)kJ/mol for hydriding,and the alloy has the maximum hydrogen absorption capacity of(1.80±0.04)wt.%under the conditions of 323 K and 3 MPa.
文摘The microstructure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy (SMA) were compared with those of initial coarse structure. The nanostructured Cu-Al-Ni ribbons were produced via rapid solidification using melt spinning technique. The structure and properties of both nanostructured and coarse-grain specimens were then characterized using XRD, SEM, AFM and DSC techniques. According to the obtained results, the nanostructured ribbons show one way shape memory effect. Besides, the formation of nanoparticles of γ2 (Cu9Al4) and the nanograins results in a significant decrease in the martensite-austenite transformation temperature. The produced nanostructure not only leads to a considerable increase in the recovered deformation but also results in the structure stability when it is subjected to deformation-recovery cycles.
文摘The morphology and structure of melt spinning Ni-33.6at% Al doped with B and RE were investigated.The results show that the alloy consists of L10 martensitic grains and L12 Ni3Al at the grain boundaries when it contains no B and RE.The addition of 0.11-0.31wt% B can suppress the martensitic transformation and Ni3Al separation at the boundaries,and a supersaturated B2 single phase NiAl is obtained.The addition of 0.05wt% RE can eliminate Ni3Al precipitated at the boundaries and get complete martensite,but 0.2-0.8wt% RE addition can suppress the martensitic transformation, and supersaturated B2 single phase NiAl is obtained.The formation mechanism of supersaturated B2 single phase NiAl has been analyzed.
文摘A novel in situ reaction system Al Zr O was developed. In situ Al 3Zr and Al 2O 3 particulate reinforced A356 alloy matrix composites have been fabricated by direct melt reaction method. The results show that the maximum sizes of Al 3Zr and Al 2O 3 particulates synthesized in the system ZrOCl 2 A356 are 1 μm and 3 μm respectively, and they are well distributed in the matrix. The investigation shows that the Al 3Zr crystal is in the shape of polyhedron and rectangle. There is a faceted growth phenomenon on Al 3Zr crystal surface. It is firstly found that the Al 3Zr crystal grows in the mechanism of twinning. The twinning plane is (1 1 4), and the twinning direction is [2 2 1] . The crystal morphology of in situ α Al 2O 3 particulate is rectangle or sphere. Furthermore, (Al 3Zr+Al 2O 3) p/A356 composites have not only higher tensile strength at room temperature (376.2 MPa) but also higher yield strength (319.4 MPa) and higher tensile strength at elevated temperature (200 ℃) than those of the A356 alloy. The dry sliding wear test shows that the wear resistance of the (Al 3Zr+Al 2O 3) p/A356 composites is greatly enhanced with increasing particulate volume fraction.
基金Project(2007AA03Z227)supported by High-tech Research and Development Program of ChinaProjects(50871050,50701011)supported by the National Natural Science Foundation of China+1 种基金Project(200711020703)supported by the Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071)supported by High Education Science Research Project of Inner Mongolia,China
文摘The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x>0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.
文摘A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw resonance. The results show that for shear thin fluids, the logarithm of the critical draw ratio has a well defined linear relationship with the power index for isothermal and uniform tension melt spinning. When the power index approaches zero, the critical draw ratio points at unity, indicating no melt spinning can be processed stably for such fluids. For shear thick fluids, the critical draw ratio increases in a more rapid way with increasing the power index.
文摘An attempt was made to numerically compute the temperature profile within the melt spinning of sheath core bicomponent fibers by deriving a set of simultaneous partial differential equations. The effects of acceleration, gravity, and air friction on the kinetics of the polymer were included and the upper-convected Maxwell model as the constitutive equation was adopted in this model.The sheath- core bicomponent fibers were partitioned intb a serial of circular cross section and it is assumed that each circular cross section has a temperature gradient while conducting the equation of energy balance. A mathematical model was developed to describe the melt spinning of sheath-core bicomponent fibers.
基金financially supported by the National Natural Science Foundation of China(No.51171119)the Natural Science Foundation of Liaoning Province(No.2013020084)+1 种基金Higher Education Youth Talent Scholar Fostering Project of Liaoning Province(No.LJQ2014015)Project of Shenyang Bureau of Science and Technological Development(No.1091177-1-00)
文摘The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.