Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua...Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.展开更多
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fa...This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.展开更多
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt...The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation.展开更多
In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be...In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.展开更多
Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding ...Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage...This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.展开更多
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper...This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati...This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.展开更多
Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage...Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.展开更多
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o...This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.展开更多
This paper studies the voltage, phase and current tracking strategy to eliminate voltage and current mutations when the virtual synchronous generator is switching between grid-connected and islanded. By using these st...This paper studies the voltage, phase and current tracking strategy to eliminate voltage and current mutations when the virtual synchronous generator is switching between grid-connected and islanded. By using these strategies the inverter can realize secondary frequency regulation and voltage regulation. If the phase is near 0 or 2π a little disturbance may made the PLL output a big error, so a new PLL is proposed by this paper. A sine module is added in the PLL to avoid this error. In order to verify the strategy proposed by this paper a simulation model is built in Matlab/Simulink. The simulation results show that the control strategy can realize seamless switching.展开更多
A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency r...A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.展开更多
The investigation explores the mechanical stress and electromagnetic performance for a wind-driven synchronous reluctance generator(SRG).The change in the mechanical stress due to the presence of centripetal force,win...The investigation explores the mechanical stress and electromagnetic performance for a wind-driven synchronous reluctance generator(SRG).The change in the mechanical stress due to the presence of centripetal force,wind speed,and rotor speed are evaluated for different thickness of tangential and radial ribs.Moreover,the variation in the electromagnetic feature such as the q−and d−axes flux,reactance ratio,inductance,torque and torque ripple are discussed for different thickness of tangential and radial ribs.Increasing both tangential and radial ribs thickness has an effect on the electromagnetic performance,but it is observed that effect is significantly more with the variation of tangential rib thickness.Similarly,the mechanical stress analysis for rotor design has been explored in this paper.It is observed that high concentration of peak stress on the rotor ribs,which limits the range of rotor speed.展开更多
As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the...As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.展开更多
Relative to the power grid, the short-capacity system has smaller inertia and weaker ability to bear disturbance. As a result, the synchronous generator in short-capacity system will be greatly influenced by harmonic....Relative to the power grid, the short-capacity system has smaller inertia and weaker ability to bear disturbance. As a result, the synchronous generator in short-capacity system will be greatly influenced by harmonic. To reveal how harmonic influence the generator, this article analyzed how harmonic current will influence the output voltage. Deduced a formula that can describe the electromagnetic torque pulsation brought by the theory of Instantaneous Power, which can explain why generator’s shaft vibrates. Then this article evaluated the applicability of current filtering methods in view of characteristics of the small capacity of the system. As a result, it was demonstrated that active filtering method is best suited for small capacity system. At last, it conducted the experiment that diesel generator set supply power to non-liner load to demonstrate the conclusion of theoretical analysis.展开更多
文摘Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method.
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.
基金supported in part by the National Natural Science Foundation of China(52177042)Natural Science Foundation of Hebei Province(E2020502031)+1 种基金the Fundamental Research Funds for the Central Universities(2017MS151),Suzhou Social Developing Innovation Project of Science and Technology(SS202134)the Top Youth Talent Support Program of Hebei Province([2018]-27).
文摘This paper proposed a new diagnosis model for the stator inter-turn short circuit fault in synchronous generators.Different from the past methods focused on the current or voltage signals to diagnose the electrical fault,the sta-tor vibration signal analysis based on ACMD(adaptive chirp mode decomposition)and DEO3S(demodulation energy operator of symmetrical differencing)was adopted to extract the fault feature.Firstly,FT(Fourier trans-form)is applied to the vibration signal to obtain the instantaneous frequency,and PE(permutation entropy)is calculated to select the proper weighting coefficients.Then,the signal is decomposed by ACMD,with the instan-taneous frequency and weighting coefficient acquired in the former step to obtain the optimal mode.Finally,DEO3S is operated to get the envelope spectrum which is able to strengthen the characteristic frequencies of the stator inter-turn short circuit fault.The study on the simulating signal and the real experiment data indicates the effectiveness of the proposed method for the stator inter-turn short circuit fault in synchronous generators.In addition,the comparison with other methods shows the superiority of the proposed model.
基金supported by the Lanzhou Jiaotong University-Southwest Jiaotong University Joint Innovation Fund(LH2024027).
文摘The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation.
基金Supported by the National Natural Science Foundation of China(No.51577124)Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC32100)
文摘In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
文摘Synchronous generators are important components of power systems and are necessary to maintain its normal and stable operation.To perform the fault diagnosis of mild inter-turn short circuit in the excitation winding of a synchronous generator,a gate recurrent unit-convolutional neural network(GRU-CNN)model whose structural parameters were determined by improved particle swarm optimization(IPSO)is proposed.The outputs of the model are the excitation current and reactive power.The total offset distance,which is the fusion of the offset distance of the excitation current and offset distance of the reactive power,was selected as the fault judgment criterion.The fusion weights of the excitation current and reactive power were determined using the anti-entropy weighting method.The fault-warning threshold and fault-warning ratio were set according to the normal total offset distance,and the fault warning time was set according to the actual situation.The fault-warning time and fault-warning ratio were used to avoid misdiagnosis.The proposed method was verified experimentally.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
文摘This paper studied the direct-drive permanent magnet synchronous machine (permanent magnet synchronous generator, PMSG) Chopper optimal topology and resistance value. Compared the different Chopper circuit low voltage ride-through capability in the same grid fault conditions in simulation. This paper computes the dump resistance ceiling according to the power electronic devices and over-current capability. Obtaining the dump resistance low limit according to the temperature resistance allows, and calculating the optimal value by drop voltage in the DC-Bus during the fault. The feasibility of the proposed algorithm is verified by simulation results.
基金Project supported by the CMEP-TASSILI Project(Grant No.14MDU920)
文摘This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
文摘This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed.
基金supported by National Natural Science Foundation of China Key program(51937003)。
文摘Due to the characteristics of intermittent photovoltaic power generation and power fluctuations in distributed photovoltaic power generation,photovoltaic grid-connected systems are usually equipped with energy storage units.Most of the structures combined with energy storage are used as the DC side.At the same time,virtual synchronous generators have been widely used in distributed power generation due to their inertial damping and frequency and voltage regulation.For the PV-storage grid-connected system based on virtual synchronous generators,the existing control strategy has unclear function allocation,fluctuations in photovoltaic inverter output power,and high requirements for coordinated control of PV arrays,energy storage units,and photovoltaic inverters,which make the control strategy more complicated.In order to solve the above problems,a control strategy for PV-storage grid-connected system based on a virtual synchronous generator is proposed.In this strategy,the energy storage unit implements maximum power point tracking,and the photovoltaic inverter implements a virtual synchronous generator algorithm,so that the functions implemented by each part of the system are clear,which reduces the requirements for coordinated control.At the same time,the smooth power command is used to suppress the fluctuation of the output power of the photovoltaic inverter.The simulation validates the effectiveness of the proposed method from three aspects:grid-connected operating conditions,frequency-modulated operating conditions,and illumination sudden-drop operating condition.Compared with the existing control strategies,the proposed method simplifies the control strategies and stabilizes the photovoltaic inverter fluctuation in the output power of the inverter.
文摘This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design.
文摘This paper studies the voltage, phase and current tracking strategy to eliminate voltage and current mutations when the virtual synchronous generator is switching between grid-connected and islanded. By using these strategies the inverter can realize secondary frequency regulation and voltage regulation. If the phase is near 0 or 2π a little disturbance may made the PLL output a big error, so a new PLL is proposed by this paper. A sine module is added in the PLL to avoid this error. In order to verify the strategy proposed by this paper a simulation model is built in Matlab/Simulink. The simulation results show that the control strategy can realize seamless switching.
文摘A consensus-based distributed control method of coordinated VSGs with communication time delays in isolate microgrid is proposed. When time delays are considered in communication, there are some effects on frequency restoration and active power output allocation. In the control structure, only local information exchange is needed, while the final frequency can be controlled to the nominal value and the VSGs can automatically share loads according to their rated values. An AC microgrid with three VSGs and some loads is implemented. The proposed control strategy is verified by MATLAB/ Simulink simulation results.
基金This work was sponsored by a Defense University from the National Defense of Ethiopia.
文摘The investigation explores the mechanical stress and electromagnetic performance for a wind-driven synchronous reluctance generator(SRG).The change in the mechanical stress due to the presence of centripetal force,wind speed,and rotor speed are evaluated for different thickness of tangential and radial ribs.Moreover,the variation in the electromagnetic feature such as the q−and d−axes flux,reactance ratio,inductance,torque and torque ripple are discussed for different thickness of tangential and radial ribs.Increasing both tangential and radial ribs thickness has an effect on the electromagnetic performance,but it is observed that effect is significantly more with the variation of tangential rib thickness.Similarly,the mechanical stress analysis for rotor design has been explored in this paper.It is observed that high concentration of peak stress on the rotor ribs,which limits the range of rotor speed.
文摘As photovoltaic (PV) capacity in power system increases, the capacity of synchronous generator needs to be reduced relatively. This leads to the lower system inertia and the higher generator reactance, and hence the generator transient stability may negatively be affected. In particular, the impact on the transient stability may become more serious when the considerable amounts of PV systems are disconnected simultaneously during voltage sag. In this work, the generator transient stability in the power system with significant PV penetration is assessed by a numerical simulation. In order to assess the impact from various angles, simulation parameters such as levels of PV penetration, variety of power sources (inverter or rotational machine), and existence of LVRT capability are considered. The simulation is performed by using PSCAD/EMTDC software.
文摘Relative to the power grid, the short-capacity system has smaller inertia and weaker ability to bear disturbance. As a result, the synchronous generator in short-capacity system will be greatly influenced by harmonic. To reveal how harmonic influence the generator, this article analyzed how harmonic current will influence the output voltage. Deduced a formula that can describe the electromagnetic torque pulsation brought by the theory of Instantaneous Power, which can explain why generator’s shaft vibrates. Then this article evaluated the applicability of current filtering methods in view of characteristics of the small capacity of the system. As a result, it was demonstrated that active filtering method is best suited for small capacity system. At last, it conducted the experiment that diesel generator set supply power to non-liner load to demonstrate the conclusion of theoretical analysis.