A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating ...A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.展开更多
A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship betwe...A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.展开更多
Absorption cooling technology is an environmentally friendly method to generate continuous chilled water making use of multiple thermal sources,such as waste heat and renewable thermal energy.In this study,two absorpt...Absorption cooling technology is an environmentally friendly method to generate continuous chilled water making use of multiple thermal sources,such as waste heat and renewable thermal energy.In this study,two absorption chillers(nominal capacity of 400 kW)with series and parallel connections are evaluated.To research the ideal configuration of chillers after thermodynamic analysis,the structures of the chillers are optimized using the particle swarm optimization algorithm by considering the heat transfer area(HTA),exergy efficiency and total annual cost as single-objective functions.The impact of temperature differences between external and internal flows,heat exchanger efficiencies and the solution allocation ratio is estimated.The optimized HTA,coefficient of perform-ance,exergy efficiency and total annual cost are 149.0 m^(2),1.56,29.44%and$229119 for the series-connected chiller,and 146.7 m^(2),1.59,31.45%and$234562 for the parallel-connected type,respectively.Under the lowest HTA condition,compared with the reference simulation results,the energy and exergy performances are improved,while the annual total cost is higher.The annual total cost is highest when maximizing the exergy efficiency,which is attributed to the increase in the HTA.The operating cost accounts for 27.42%(series type)and 26.54%(parallel type)when the annual cost is the lowest.展开更多
Cold energy generation systems must be improved to prevent catastrophic climate change. In this study, we focused on an absorption chiller cycle with HFC-134a and an ionic liquid pair as the refrigerant and absorbent,...Cold energy generation systems must be improved to prevent catastrophic climate change. In this study, we focused on an absorption chiller cycle with HFC-134a and an ionic liquid pair as the refrigerant and absorbent, respectively. It was expected that this absorption chiller cycle could generate cold heat below 0°C. Two liquids were selected and their absorption equilibrium with this pair was evaluated for the absorption chiller cycle. We measured the adsorbed amount at equilibrium with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [BMIM][Tf2N] and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide [N1113][Tf2N]. The experimental results were reproduced using the non-random two liquid (NRTL) model. This analysis model corresponded well in terms of the amount of adsorption at equilibrium with the experimental results. A Duhring diagram was also generated the NRTL model, and the absorption cycle characteristics as a function of temperature were determined. The absorption chiller cycle obtained cold heat at 10°C with a regeneration temperature of 70°C in addition to generating cold heat below 0°C.展开更多
Many researchers have studied single and double effect absorption cycles based on first and second lows of thermodynamics But so far the relation of different parameters inside these cycles to the second law of thermo...Many researchers have studied single and double effect absorption cycles based on first and second lows of thermodynamics But so far the relation of different parameters inside these cycles to the second law of thermodynamics in boiler and cooling tower has not been investigated. In this paper, a system comprised of a series flow double effect water-Lithium bromide absorption chiller, a boiler and a cooling tower is studied based on the first and second laws of thermodynamics, and also exergy analysis is investigated. For this purpose, mass and energy conservation laws governing the system are written, and coefficient of performance of the system, exergy destruction (loss) of each component and exergy efficiency have been calculated.展开更多
To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal Intern...To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal International Organization for Standardization(ISO)conditions but face challenges during summer when ambient temperatures reach 40℃.To enhance performance,the proposal suggests cooling inlet air by 15℃using a vapor absorption chiller(VAC),utilizing residual exhaust gases from a combined cycle power plant(CCPP)to maximize power output.Additionally,diverting a portion of exhaust gases to drive an organic Rankine cycle(ORC)for supplementary power generation offers added efficiency.This integrated approach not only boosts power output but alsominimizes environmental impact by repurposing exhaust gases for additional operations.This study presents a detailed energy and economic analysis of a modified combine cycle power plant,in Kotri,Pakistan.R600A is used as organic fuel for the ORC while LiBr-H2O solution is used for the VAC.Two performance parameters,efficiency and energy utilization factor,Four energetic parameters,Work output of ORC,modified CCPP,original CCPP and cooling rate,and one economics parameter,payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine(ψ).A parametric investigation was conducted within the temperature range of 18℃to 50℃,relative humidity between 70%and 90%,and theψranging from 0 to 0.3.The findings reveal that under elevated ambient conditions(40℃,90%humidity)withψat 0,the Energy Utilization Factor(EUF)exceeds 60%.However,the ORC exhibits a low work output of 100KWalongside a high cooling load of 29,000 kW.Conversely,the modified system demonstrates an augmented work output of approximately 81,850 KWcompared to the original system’s 78,500KW.Furthermore,the integration of this systemproves advantageous across all metrics.Additionally,the payback period of the system is contingent on ambient conditions,with lower conditions correlating to shorter payback periods and vice versa.展开更多
In this study, a novel generator for the single-effect LiBr-H2O absorption chiller using solar energy was investigated. A dual-chamber vortex generator (DCVG) consisted of a lower chamber and an upper chamber. The hot...In this study, a novel generator for the single-effect LiBr-H2O absorption chiller using solar energy was investigated. A dual-chamber vortex generator (DCVG) consisted of a lower chamber and an upper chamber. The hot weak LiBr-H2O liquid entered the lower chamber tangentially through a small nozzle to create a strong vortex flow. Due to the rotating flow, the pressure was reduced toward the central portion of the lower chamber. Experiments were conducted under different solution flow rates and temperatures. The experimental results showed that the lower pressure developed in the lower chamber could reduce the saturated temperature and help the evaporation in the generator that is more heat could be utilized to generate more refrigerant vapor. When the inlet temperature was 90°C, the COP of a solar absorption chiller using the DCVG could reach 0.83, which was higher than of the conventional absorption chiller by 22%.展开更多
文摘A single stage ammonia-water absorption chiller with complete condensation is designed, built and tested. The apparatus is designed for a cooling capacity of 2814 W, which is obtained using electric heater as heating source. The thermodynamic models have been derived using the First and Second Laws. Calculated results are compared with experimental data. The results show that the cooling capacity of experimental apparatus is found between 1900 and 2200 W with the actual coefficient of performance (COP) between 0.32 and 0.36. The contribution of the components to internal entropy production is analyzed. It shows that the larger irreversibility is caused by spanning the largest temperature and dissipated thermal energy by heat transfer losses at the generator and evaporator. In the experimentation, the low pressure is lower than the designed value. This is a consequence of a large capacity in the falling film absorber which performs as expected. This decreases the evaporation pressure, and the evaporating temperature could be reduced to the designed value.
文摘A part load operation by turning the burner on and off intermittently is effective for a small scale direct fired absorption chiller. The dynamic performance of the system has been investigated. The relationship between pressure, temperature and concentration of the lithium bromide solution have been analyzed. The result obtained indicates that the pressure of the high pressure generator and the temperature of the exhausted smoke are the most sensitive parameters. It is also found that the transition time from a full load to a part load condition is quite long, and part load relative cooling capacity is almost near the intermittent running time ratio and oil consumption ratio.
基金supported by National Natural Science Foundation of China(grant no.51736006).
文摘Absorption cooling technology is an environmentally friendly method to generate continuous chilled water making use of multiple thermal sources,such as waste heat and renewable thermal energy.In this study,two absorption chillers(nominal capacity of 400 kW)with series and parallel connections are evaluated.To research the ideal configuration of chillers after thermodynamic analysis,the structures of the chillers are optimized using the particle swarm optimization algorithm by considering the heat transfer area(HTA),exergy efficiency and total annual cost as single-objective functions.The impact of temperature differences between external and internal flows,heat exchanger efficiencies and the solution allocation ratio is estimated.The optimized HTA,coefficient of perform-ance,exergy efficiency and total annual cost are 149.0 m^(2),1.56,29.44%and$229119 for the series-connected chiller,and 146.7 m^(2),1.59,31.45%and$234562 for the parallel-connected type,respectively.Under the lowest HTA condition,compared with the reference simulation results,the energy and exergy performances are improved,while the annual total cost is higher.The annual total cost is highest when maximizing the exergy efficiency,which is attributed to the increase in the HTA.The operating cost accounts for 27.42%(series type)and 26.54%(parallel type)when the annual cost is the lowest.
文摘Cold energy generation systems must be improved to prevent catastrophic climate change. In this study, we focused on an absorption chiller cycle with HFC-134a and an ionic liquid pair as the refrigerant and absorbent, respectively. It was expected that this absorption chiller cycle could generate cold heat below 0°C. Two liquids were selected and their absorption equilibrium with this pair was evaluated for the absorption chiller cycle. We measured the adsorbed amount at equilibrium with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [BMIM][Tf2N] and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide [N1113][Tf2N]. The experimental results were reproduced using the non-random two liquid (NRTL) model. This analysis model corresponded well in terms of the amount of adsorption at equilibrium with the experimental results. A Duhring diagram was also generated the NRTL model, and the absorption cycle characteristics as a function of temperature were determined. The absorption chiller cycle obtained cold heat at 10°C with a regeneration temperature of 70°C in addition to generating cold heat below 0°C.
文摘Many researchers have studied single and double effect absorption cycles based on first and second lows of thermodynamics But so far the relation of different parameters inside these cycles to the second law of thermodynamics in boiler and cooling tower has not been investigated. In this paper, a system comprised of a series flow double effect water-Lithium bromide absorption chiller, a boiler and a cooling tower is studied based on the first and second laws of thermodynamics, and also exergy analysis is investigated. For this purpose, mass and energy conservation laws governing the system are written, and coefficient of performance of the system, exergy destruction (loss) of each component and exergy efficiency have been calculated.
文摘To meet the escalating electricity demand and rising fuel costs,along with notable losses in power transmission,exploring alternative solutions is imperative.Gas turbines demonstrate high efficiency under ideal International Organization for Standardization(ISO)conditions but face challenges during summer when ambient temperatures reach 40℃.To enhance performance,the proposal suggests cooling inlet air by 15℃using a vapor absorption chiller(VAC),utilizing residual exhaust gases from a combined cycle power plant(CCPP)to maximize power output.Additionally,diverting a portion of exhaust gases to drive an organic Rankine cycle(ORC)for supplementary power generation offers added efficiency.This integrated approach not only boosts power output but alsominimizes environmental impact by repurposing exhaust gases for additional operations.This study presents a detailed energy and economic analysis of a modified combine cycle power plant,in Kotri,Pakistan.R600A is used as organic fuel for the ORC while LiBr-H2O solution is used for the VAC.Two performance parameters,efficiency and energy utilization factor,Four energetic parameters,Work output of ORC,modified CCPP,original CCPP and cooling rate,and one economics parameter,payback period were examined under varying ambient conditions and mass fraction of exhaust gases from outlet of a gas turbine(ψ).A parametric investigation was conducted within the temperature range of 18℃to 50℃,relative humidity between 70%and 90%,and theψranging from 0 to 0.3.The findings reveal that under elevated ambient conditions(40℃,90%humidity)withψat 0,the Energy Utilization Factor(EUF)exceeds 60%.However,the ORC exhibits a low work output of 100KWalongside a high cooling load of 29,000 kW.Conversely,the modified system demonstrates an augmented work output of approximately 81,850 KWcompared to the original system’s 78,500KW.Furthermore,the integration of this systemproves advantageous across all metrics.Additionally,the payback period of the system is contingent on ambient conditions,with lower conditions correlating to shorter payback periods and vice versa.
基金Supported by the Opening Foundation of Beijing Municipality
文摘In this study, a novel generator for the single-effect LiBr-H2O absorption chiller using solar energy was investigated. A dual-chamber vortex generator (DCVG) consisted of a lower chamber and an upper chamber. The hot weak LiBr-H2O liquid entered the lower chamber tangentially through a small nozzle to create a strong vortex flow. Due to the rotating flow, the pressure was reduced toward the central portion of the lower chamber. Experiments were conducted under different solution flow rates and temperatures. The experimental results showed that the lower pressure developed in the lower chamber could reduce the saturated temperature and help the evaporation in the generator that is more heat could be utilized to generate more refrigerant vapor. When the inlet temperature was 90°C, the COP of a solar absorption chiller using the DCVG could reach 0.83, which was higher than of the conventional absorption chiller by 22%.