非高斯性数据间的因果网络已经在经济学、生物学和环境学等学科得到了广泛应用.DirectLingam(Direct Method for Learning a Linear Non-Gaussian Structural Equation Model)算法是其中一个经典解法,但其存在维度达到25维度以上时外生...非高斯性数据间的因果网络已经在经济学、生物学和环境学等学科得到了广泛应用.DirectLingam(Direct Method for Learning a Linear Non-Gaussian Structural Equation Model)算法是其中一个经典解法,但其存在维度达到25维度以上时外生变量(exogenous variable)识别率低的问题,进而产生级联效应,使得整个网络的估计误差随着层数增大越来越大.为此提出了一种基于负熵局部选择外生变量的DirectLingam算法(LS-DirectLingam),把变量的非高斯性作为外生变量选择的标准,用负熵来度量变量的非高斯,选择负熵最大的k个变量存入局部目标变量集合Lv中,在集合Lv中进一步去寻找外生变量,从而提高了外生变量的识别率.与基本的DirectLingam算法进行实验比较,结果表明LS-DirectLingam算法优于DirectLingam算法.展开更多
文摘非高斯性数据间的因果网络已经在经济学、生物学和环境学等学科得到了广泛应用.DirectLingam(Direct Method for Learning a Linear Non-Gaussian Structural Equation Model)算法是其中一个经典解法,但其存在维度达到25维度以上时外生变量(exogenous variable)识别率低的问题,进而产生级联效应,使得整个网络的估计误差随着层数增大越来越大.为此提出了一种基于负熵局部选择外生变量的DirectLingam算法(LS-DirectLingam),把变量的非高斯性作为外生变量选择的标准,用负熵来度量变量的非高斯,选择负熵最大的k个变量存入局部目标变量集合Lv中,在集合Lv中进一步去寻找外生变量,从而提高了外生变量的识别率.与基本的DirectLingam算法进行实验比较,结果表明LS-DirectLingam算法优于DirectLingam算法.