期刊文献+
共找到6,239篇文章
< 1 2 250 >
每页显示 20 50 100
Review on laser directed energy deposited aluminum alloys 被引量:2
1
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Printability disparities in heterogeneous material combinations via laser directed energy deposition:a comparative study
2
作者 Jinsheng Ning Lida Zhu +9 位作者 Shuhao Wang Zhichao Yang Peihua Xu Pengsheng Xue Hao Lu Miao Yu Yunhang Zhao Jiachen Li Susmita Bose Amit Bandyopadhyay 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期389-405,共17页
Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality... Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts. 展开更多
关键词 directed energy deposition PRINTABILITY microstructure MICROHARDNESS bimetallic parts
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
3
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Revealing precipitation behavior and mechanical response of wire-arc directed energy deposited Mg-Gd-Y-Zr alloy by tailoring aging procedures
4
作者 Xinzhi Li Xuewei Fang +8 位作者 Zhiyan Zhang Shahid Ghafoor Ruikai Chen Yi Liu Kexin Tang Kai Li Minghua Ma Jiahao Shang Ke Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期176-200,共25页
Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,i... Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries. 展开更多
关键词 wire-arc directed energy deposition Mg-Gd-Y-Zr alloy precipitation response prominent strength-ductilitycombination deformation mechanism
下载PDF
Spontaneous Recovery in Directed Dynamical Networks
5
作者 Xueming Liu Xian Yan H.Eugene Stanley 《Engineering》 SCIE EI CAS CSCD 2024年第6期208-214,共7页
Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneous... Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience. 展开更多
关键词 Network resilience directed dynamical networks Spontaneous recovery
下载PDF
A Non-parametric Gradient-Based Shape Optimization Approach for Solving Inverse Problems in Directed Self-Assemblyof Block Copolymers
6
作者 Daniil Bochkov Frederic Gibou 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1472-1489,共18页
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t... We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA). 展开更多
关键词 Block copolymers directed self-assembly Inverse design Shape optimization Vertical interconnect accesses(VIA)
下载PDF
Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition 被引量:3
7
作者 MengJie Luo Ruidi Li +4 位作者 Dan Zheng JingTao Kang HuiTing Wu ShengHua Deng PengDa Niu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期548-567,共20页
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat... Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi. 展开更多
关键词 shape memory alloy gradient functional materials laser directed energy deposition spatial heterogeneity additive manufacturing mechanical properties
下载PDF
Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn(AZ91)alloy
8
作者 Gloria Graf Petra Spoerk-Erdely +4 位作者 Emad Maawad Michael Burtscher Daniel Kiener Helmut Clemens Thomas Klein 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1944-1958,共15页
In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major rea... In recent years,wire-arc directed energy deposition(wa DED),which is also commonly known as wire-arc additive manufacturing(WAAM),has emerged as a promising new fabrication technique for magnesium alloys.The major reason for this is the possibility of producing parts with a complex geometry as well as a fine-grained microstructure.While the process has been shown to be applicable for Mg-Al-Zn alloys,there is still a lack of knowledge in terms of the influence of the WAAM process on the age-hardening response.Consequently,this study deals with the aging response of a WAAM AZ91 alloy.In order to fully understand the mechanisms during aging,first,the as-built condition was analyzed by means of high-energy X-ray diffraction(HEXRD)and scanning electron microscopy.These investigations revealed a finegrained,equiaxed microstructure with adjacent areas of alternating Al content.Subsequently,the difference between single-and double-step aging as well as conventional and direct aging was studied on the as-built WAAM AZ91 alloy for the first time.The aging response during the various heat treatments was monitored via in situ HEXRD experiments.Corroborating electron microscopy and hardness studies were conducted.The results showed that the application of a double-step aging heat treatment at 325℃with pre-aging at 250℃slightly improves the mechanical properties when compared to the single-step heat treatment at 325℃.However,the hardness decreases considerably after the pre-aging step.Thus,aging at lower temperatures is preferable within the investigated temperature range of 250-325℃.Moreover,no significant difference between the conventionally aged and directly aged samples was found.Lastly,the specimens showed enhanced precipitation kinetics during aging as compared to cast samples.This could be attributed to a higher amount of nucleation sites and the particular temperature profile of the solution heat treatment. 展开更多
关键词 Wire-arc directed energy deposition Additive manufacturing High-energy X-ray diffraction Synchrotron Mg-Al-Zn alloys AGE-HARDENING
下载PDF
Percolation transitions in edge-coupled interdependent networks with directed dependency links
9
作者 高彦丽 于海波 +2 位作者 周杰 周银座 陈世明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期586-595,共10页
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas... We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs. 展开更多
关键词 edge-coupled interdependent networks with directed dependency links percolation transitions cascading failures robustness analysis
下载PDF
Directed Acyclic Graph Blockchain for Secure Spectrum Sharing and Energy Trading in Power IoT
10
作者 Zixi Zhang Mingxia Zhang +2 位作者 Yu Li Bo Fan Li Jiang 《China Communications》 SCIE CSCD 2023年第5期182-197,共16页
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an... Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT. 展开更多
关键词 power Internet of Things(IoT) spectrum sharing energy trading security and privacy consortium blockchain directed Acyclic Graph(DAG) iterative double auction
下载PDF
A Secure Microgrid Data Storage Strategy with Directed Acyclic Graph Consensus Mechanism
11
作者 Jian Shang Runmin Guan Wei Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2609-2626,共18页
The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to ... The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years.In real-world scenarios,microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks.To meet the high hardware resource requirements,address the vulnerability to network attacks and poor reliability in the tradi-tional centralized data storage schemes,this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph(DAG)consensus mechanism.Firstly,the microgrid data storage model is designed based on the edge computing technology.The blockchain,deployed on the edge computing server and combined with cloud storage,ensures reliable data storage in the microgrid.Secondly,a blockchain consen-sus algorithm based on directed acyclic graph data structure is then proposed to effectively improve the data storage timeliness and avoid disadvantages in traditional blockchain topology such as long chain construction time and low consensus efficiency.Finally,considering the tolerance differences among the candidate chain-building nodes to network attacks,a hash value update mechanism of blockchain header with node trust identification to ensure data storage security is proposed.Experimental results from the microgrid data storage platform show that the proposed method can achieve a private key update time of less than 5 milliseconds.When the number of blockchain nodes is less than 25,the blockchain construction takes no more than 80 mins,and the data throughput is close to 300 kbps.Compared with the traditional chain-topology-based consensus methods that do not consider node trust,the proposed method has higher efficiency in data storage and better resistance to network attacks. 展开更多
关键词 MICROGRID data security storage node trust degree directed acyclic graph data structure consensus mechanism secure multi-party computing blockchain
下载PDF
Fundamental Concepts behind the Development of Gamma-Ray, Directed Energy Sources
12
作者 Eugene Oks 《Open Journal of Microphysics》 2023年第3期27-35,共9页
We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Anoth... We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Another concept employs a direct excitation of a quadrupole nuclear level by a powerful optical laser. The third concept is based on the process of a high-order harmonic generation by an x-ray laser. All three concepts can be used for designing gamma-ray lasers that would have significant advantages over x-ray lasers. First, missile defense systems employing gamma-ray lasers would be weather independent. Second, the gamma-ray laser radiation can penetrate through the sand, which could be suspended in the air in a desert either naturally (due to strong winds) or artificially (as a protective “shield”). Besides, the first out of the three concepts can beemployed for creating non-laser gamma-ray sources of directed energy to be used for detecting stored radioactive materials, including the radioactive materials carried by an aircraft or a satellite. Last but not least: these concepts can be also used for remotely destroying biological and chemical weapons as a preemptive strike or during its delivery phase, as well as for distinguishing a nuclear warhead from decoy warheads. Thus, the defense capabilities of the proposed gamma-ray lasers can save numerous lives. 展开更多
关键词 Gamma-Ray Lasers directed Energy Sources Self-Channeling Quadrupole Nuclear Levels High-Order Harmonic Generation
下载PDF
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:3
13
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Cell reprogramming therapy for Parkinson’s disease 被引量:5
14
作者 Wenjing Dong Shuyi Liu +1 位作者 Shangang Li Zhengbo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2444-2455,共12页
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ... Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease. 展开更多
关键词 animal models ASTROCYTES AUTOLOGOUS cell reprogramming cell therapy direct lineage reprogramming dopaminergic neurons induced pluripotent stem cells non-human primates Parkinson’s disease
下载PDF
Anisotropic time-dependent behaviors of shale under direct shearing and associated empirical creep models 被引量:2
15
作者 Yachen Xie Michael Z.Hou +1 位作者 Hejuan Liu Cunbao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1262-1279,共18页
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,... Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation. 展开更多
关键词 Rock anisotropy Direct shear creep Creep compliance Steady-creep rate Empirical model Creep constitutive model
下载PDF
Engineering Nano/Microscale Chiral Self‑Assembly in 3D Printed Constructs 被引量:1
16
作者 Mohsen Esmaeili Ehsan Akbari +3 位作者 Kyle George Gelareh Rezvan Nader Taheri‑Qazvini Monirosadat Sadati 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期313-332,共20页
Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch... Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs. 展开更多
关键词 directed chiral self-assembly Cellulose nanocrystals Bioinspired nanocomposite 3D printing RHEOLOGY
下载PDF
New direction for surgery:Super minimally invasive surgery 被引量:2
17
作者 En-Qiang Linghu 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1676-1679,共4页
The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm... The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm because of its lesser invasiveness.However,changes in anatomical structures of the body and reconstruction of internal organs or different organs are common after traditional surgery or MIS,decreasing the quality of life of patients post-operation.Thus,I propose a new treatment mode,super MIS(SMIS),which is defined as“curing a disease or lesion which used to be treated by MIS while preserving the integrity of the organs”.In this study,I describe the origin,definition,operative channels,advantages,and future perspectives of SMIS. 展开更多
关键词 Super minimally invasive surgery Minimally invasive surgery Treatment mode Traditional Surgery New direction for surgery
下载PDF
Complication rates after direct anterior vs posterior approach for hip hemiarthroplasty in elderly individuals with femoral neck fractures 被引量:2
18
作者 Tatiana Charles Nicolas Bloemers +1 位作者 Bilal Kapanci Marc Jayankura 《World Journal of Orthopedics》 2024年第1期22-29,共8页
BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with ... BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with no consensus regarding the superiority of any single approach.AIM To compare early postoperative complications after implementing the direct anterior and posterior approaches(PL)for hip hemiarthroplasty after femoral neck fractures.METHODS This is a comparative,retrospective,single-center cohort study conducted at a university hospital.Between March 2008 and December 2018,273 patients(a total of 280 hips)underwent bipolar hemiarthroplasties(n=280)for displaced femoral neck fractures using either the PL(n=171)or the minimally invasive direct anterior approach(DAA)(n=109).The choice of approach was related to the surgeons’practices;the implant types were similar and unrelated to the approach.Dislocation rates and other complications were reviewed after a minimum followup of 6 mo.RESULTS Both treatment groups had similarly aged patients(mean age:82 years),sex ratios,patient body mass indexes,and patient comorbidities.Surgical data(surgery delay time,operative time,and blood loss volume)did not differ significantly between the groups.The 30 d mortality rate was higher in the PL group(9.9%)than in the DAA group(3.7%),but the difference was not statistically significant(P=0.052).Among the one-month survivors,a significantly higher rate of dislocation was observed in the PL group(14/154;9.1%)than in the DAA group(0/105;0%)(P=0.002).Of the 14 patients with dislocation,8 underwent revision surgery for recurrent instability(posterior group),and one of them had 2 additional procedures due to a deep infection.The rate of other complications(e.g.,perioperative and early postoperative periprosthetic fractures and infection-related complications)did not differ significantly between the groups.CONCLUSION These findings suggest that the DAA to bipolar hemiarthroplasty for patients with femoral neck fractures is associated with a lower dislocation rate(<1%)than the PL. 展开更多
关键词 HEMIARTHROPLASTY Femoral neck fracture Direct anterior approach Posterior approach DISLOCATION MORTALITY
下载PDF
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents 被引量:1
19
作者 Xiaobin Zhang Aoqi Wang +1 位作者 Xingbao Wang Wenying Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期187-197,共11页
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz... The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms. 展开更多
关键词 Direct coal liquefaction Liquefaction solvents Process simulation Hydrogen solubility
下载PDF
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming 被引量:1
20
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs NEUROGENESIS post-transcriptional regulation RNA binding proteins
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部