Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production ...Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways.展开更多
The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mi...The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mines,and the average boulder yield was as high as 22.7%.In order to develop the mine production efficiency,the circular medium-length hole blasting technology was proposed and field tests were carried out.The test results showed that circular medium-length hole blasting mining can reduce the average boulder yield to 10.3%.Compared with the traditional scalloped medium-length hole blasting mining,the average boulder yield was decreased by 12.4%.The daily yield of ore for the panel on duty was increased by 152.29 t,and the growth rate was 51.1%.The new technology can reduce the time for the handling of boulder and the consumption of explosives and detonators for recrushing,and increase the efficiency of mining while reduce the mining cost,which has received good blasting effects.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with ANSYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, no...The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with ANSYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, node velocity, node time-acceleration history and the blasting cartridge volume ratio during the process were analyzed. It was found that the detonation of charged holes would cause the interaction of stress wave with the wall of uncharged holes. Initial rock cracking and displacement to neighboring uncharged holes become the main mechanism of cavity formation in early stage.2008 University of Science and Technology Beijing. All rights reserved.展开更多
The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of m...The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.展开更多
Based on experiments in lab, this paper analyzes the mechanism of directional broken controlled blasting and applies the technology to the cutting by utilizing its characteristic. The model cutting experiment and the ...Based on experiments in lab, this paper analyzes the mechanism of directional broken controlled blasting and applies the technology to the cutting by utilizing its characteristic. The model cutting experiment and the practical application result show that the cutting blasting technology is an effective way.展开更多
With the development of fracture mechanics,the fracture plane control blasting with notched borcholes hascome into being.This technique is used to create a satisfactory presplit along the contour of an excavation inro...With the development of fracture mechanics,the fracture plane control blasting with notched borcholes hascome into being.This technique is used to create a satisfactory presplit along the contour of an excavation inrock.However,the amount of explosive loaded in each hol usually is determined by trial and error.Because ofthis,two approaches estimating the amount of explosive for the blasting technique are suggested.展开更多
Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is a...Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.展开更多
Reducing the blasting vibration is important for blasting excavation in subway tunnel construction.Taking the 3rd bid section of Line 3 of Qingdao subway project as an example,the distance between tunnel vault and gro...Reducing the blasting vibration is important for blasting excavation in subway tunnel construction.Taking the 3rd bid section of Line 3 of Qingdao subway project as an example,the distance between tunnel vault and ground is 5 ~ 8 m.In order to insure the safety of the upper buildings,technologies of parallel cut with large diameter empty hole,one-time initiation and delay by parts,and multiple shallow holes were adopted in the project.The results showed that the maximum value of vertical vibration was limited in the criterion allowance,and the upper buildings were not damaged.Besides,problems were solved that the number of nonel detonator was difficult to meet the requirements of excavating a large cross-section tunnel by blasting,multiple cross-section could’t be initiated simultaneously,and construction efficiency was low,which ensure the construction safety and schedule.展开更多
Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanis...Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form, gap size and gap angle. The cool tower was twisted, collapsed directionally and broken well according to the design requirements. The expected results and purposes of blasting were obtained with no back blow, total blasted pile approximates to 4 - 5 m, no occurrence of flying stones and no damage to fixed buildings and equipment, the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking. The test and measurement of blasting vibrating velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting. The study shows that gap form, gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.展开更多
This paper numerically simulates the stress development and generates a three-dimensional model of the medium-length hole blasting in infinite rock mass for continuous charge and divided charge in blasting by using th...This paper numerically simulates the stress development and generates a three-dimensional model of the medium-length hole blasting in infinite rock mass for continuous charge and divided charge in blasting by using the large-scale nonlinear dynamic analysis software LS-DYNA and the elastic-plastic model ~*MAT_PLASTIC_KINEMATIC and JWO-EOS.The differences of the decreasing rate in Von Mises effective stress of blasting,element effective stress peak of free surface,bore wall stress and acceleration are investigated.It is shown that divided charge could greatly improve the blasting effect by engineering blasting practice.展开更多
In holes, the measurement of the velocity of detonation(VOD) helps in comparing and evaluating relative performance of explosives. In this paper a blast performance assessment was conducted based on the results obta...In holes, the measurement of the velocity of detonation(VOD) helps in comparing and evaluating relative performance of explosives. In this paper a blast performance assessment was conducted based on the results obtained from the steady state VOD measurement of emulsion explosives HEF100 and degree of blast fragmentation conducted on an open pit blast. The aim of this study was to compare the steady state VOD measured in the field and the published VOD of HEF100 under ideal laboratory conditions and ascertain its efficacy. In the trial, a resistance wire continuous VOD measurement system connected to a SpeedVOD was employed to measure and record the steady state VOD values from five different blast holes. Furthermore, a post fragmentation analysis was conducted using the existing fragmentation models and an image processing software. The steady state VOD values recorded from the field ranged between 4981 m/s to 5387 m/s consistent with the published VOD subjected to ideal laboratory conditions and the analyzed fragmentation size distribution indicates that 90% of the blasted muck pile was within the allowable and optimal 700 mm passing size.展开更多
Time interval of short delay ignition is an important factor to affect theefficiency of blasting cuts. The motion process of rock pieces in the cut cavity is analyzed, amechanical model to calculate the delay time of ...Time interval of short delay ignition is an important factor to affect theefficiency of blasting cuts. The motion process of rock pieces in the cut cavity is analyzed, amechanical model to calculate the delay time of parallel hole cuts is presented for tunnel blasting,and a theoretical method to determine the volume ratio (the clearage rate) of the rock pieceswithin the cut cavity at different moments is proposed for the blasting cut with an empty hole.Numerical analysis results show that the optimal delay interval is proportional to the boreholedepth. The suggested results are of practical value to the optimal design of the delay interval inmillisecond blasting related to the parallel hole cuts with an empty hole.展开更多
With the innovation and development of offshore oil drilling technology, drilling wells in deep waters areas have become an important activity for the development of new hydrocarbon reservoirs in this type of environm...With the innovation and development of offshore oil drilling technology, drilling wells in deep waters areas have become an important activity for the development of new hydrocarbon reservoirs in this type of environment. CNOOC (China National Offshore Oil Corporation) won the rights to exploit two unexplored deepwater blocks in the Gulf of Mexico, in a bid realized by the Mexican Government (CNH), in 2016. The challenge to combine the newest technology with the oil industry experienced knowledge to lead the exploration and development of these deep-water blocks in Mexico is around the corner. Therefore, the basic techniques for deep waters wells drilling and the main potential risks are expounded in this paper. A set of deep waters wells drilling processes and methodologies are previously designed, and a specific case is demonstrated next, which provides a referential model for deep waters wells drilling in the Gulf of Mexico.展开更多
The proline iminopeptidase (PchPiPA) of the white-rot fungi Phanerochaete chrysosporium is an exopeptidase specific to catalyze hydrolysis of the N-terminal proline of peptides or proteins. Its catalytic cavity is com...The proline iminopeptidase (PchPiPA) of the white-rot fungi Phanerochaete chrysosporium is an exopeptidase specific to catalyze hydrolysis of the N-terminal proline of peptides or proteins. Its catalytic cavity is comprised of a catalytic triad (Ser107, Asp264 and His292) and an oxyanion hole (His38, Gly39, Gly40 and Pro41). In this work, several amino acid residues involved in the catalytic cavity were selected for investigation of their influences on the catalytic activity by site-directed mutagenesis. It was shown that mutation of residues (Gly39 and Gly40) involved in oxyanion hole resulted in almost complete loss of catalytic activity largely due to changes in kcat. The other residues (Gly42 and Cys45) lined at the entrance of the active cavity also yielded a profound negative effect on the activity. Mutation of the other two residues Arg130 and Gly131 which were flanked spatially by the nucleophilic attacking active site of Ser107, caused different effects on the activity. R130Aincreased catalytic efficiency due to changes in both kcat and Km;while G131V decreased the value of kcat/Km mainly due to changes in kcat. And T111Aalso caused a negative effect on the kcat. Conclusively, these amino acid residues involved in active cavity were more susceptible to be negatively affected by mutation, suggested that the active cavity of proline iminopeptidase might evolve to be less plausible.展开更多
A model recognition method for the on-line optimal control of the parameters ofthree-cone blast drills is developed. It takes a few of on-line measurements and has a rapidoptimization speed. The mathematic model for o...A model recognition method for the on-line optimal control of the parameters ofthree-cone blast drills is developed. It takes a few of on-line measurements and has a rapidoptimization speed. The mathematic model for on-line optimal control of the parameters and thedetermination of the parameters in the model are also presented.展开更多
Bench blasting is commonly used in open-pit mining.Some design parameters such as positions of hole packing and caving holes have great influences on the blasting effects.In this work,with a hybrid discrete-finite ele...Bench blasting is commonly used in open-pit mining.Some design parameters such as positions of hole packing and caving holes have great influences on the blasting effects.In this work,with a hybrid discrete-finite element method,numerical simulations of bench blasting are conducted,capturing the whole continuous-discontinuous processes.Considering two engineering cases,the influences of hole packing and caving holes are evaluated.The numerical results not only lead to some improved designs by relocating the packing positions and caving holes but also indicate the reliability of the adopted numerical tools.展开更多
Rolled static cracking agent(RSCA)can solve the intractable problem of traditional bulk static cracking agent(BSCA)in engineering applications.This paper innovatively studies the rational water-cement ratio of BSCA an...Rolled static cracking agent(RSCA)can solve the intractable problem of traditional bulk static cracking agent(BSCA)in engineering applications.This paper innovatively studies the rational water-cement ratio of BSCA and the immersion soaking time of RSCA under the condition of controlling temperature.Through the expansion and cracking performance experiments,the development characteristics of expansion pressure,the cracking effect of the single-hole specimen and the performance of hole spraying prevention under the action of BSCA and RSCA were compared and analyzed.The results show that:(1)The volume growth rate of static cracking agent decreases with the increase of water-cement ratio,and the fluidity increases with the increase of water-cement ratio.The rational water-cement ratio for BSCA application is 0.3,and the rational immersion time of RSCA is 2-2.5 min;(2)Under the bore diameters of 30,35,40 and 45 mm,the expansion pressure of BSCA with a water-cement ratio of 0.3 is 38.2,52.3,61.5 and 68 MPa,and the expansion pressure of RSCA immersed in water for 2.5 min is 43.5,58.8,69.5 and 75.1 MPa,respectively.Among them,the development speed of expansion pressure of BSCA is higher than that of RSCA,and the arrival time of the peak expansion pressure of RSCA is 1.7 times that of BSCA;(3)The crack initiation speed of single-hole specimen under the action of RSCA is 10.3%lower than that under the action of BSCA,but the cracking speed of the former is 72.6%higher than that of the latter;(4)The hole spraying occurs in BSCA under the bore diameter of 50,55 and 60 mm,while the hole spraying occurs in RSCA under the bore diameter of 60 mm.In terms of bore diameter,the hole spraying prevention of the RSCA is better than that of BSCA.The research results enrich the static blasting technology and provide data support and theoretical reference for field application.展开更多
The dynamic stress-fields and their distribution characteristics around boreholes in the directed crack blasting were measured with the dynamic photo-elastic laser holography apparatus and the ultradymamic measurement...The dynamic stress-fields and their distribution characteristics around boreholes in the directed crack blasting were measured with the dynamic photo-elastic laser holography apparatus and the ultradymamic measurement system. The directed crack mechanism and its mechanical model have been analysed and expounded. Through the 43 production experiments using slotted cartridges and the double triangle center cut-holes for directed crack blasting in underground rock drift, the results of which the rates of half-hole marks and efficiency of borehole,and the nonsmooth grades of the cut contours are 96%, 98% and 10cm respectively have been achieved.展开更多
基金the State Key Development Program for Basic Research of China(2016YFC0600903)the National Natural Science Foundation of China(51934001).
文摘Drilling and blasting methods have been used as a common driving technique for shallow-hole driving and blasting in rock roadways.With the advent of digital electronic detonators and the need for increased production efciency,the traditional blasting design is no longer suitable for deep hole blasting.In this paper,a disperse charge cut blasting method was proposed to address the issues of low excavation depth and high block rate in deep hole undercut blasting.First,a blasting model was used to illustrate the mechanism of the deep hole dispersive charge cut blasting process.Then,continuous charge and dispersed charge blasting models were developed using the smooth particle hydrodynamics-fnite element method(SPHFEM).The cutting parameters were determined theoretically,and the cutting efciency was introduced to evaluate the cutting efect.The blasting efects of the two charging models were analyzed utilizing the evolution law of rock damage,the number of rock particles thrown,and the cutting efciency.The results show that using a dispersed charge improves the cutting efciency by about 20%and the rock breakage for the deep hole cut blasting compared to the traditional continuous charge.In addition,important parameters such as cutting hole spacing,cutting hole depth and upper charge proportion also have a signifcant impact on the cutting efect.Finally,the deep hole dispersed charge cut blasting technology is combined with the digital electronic detonator through the feld engineering practice.It provides a reference for the subsequent deep hole cutting blasting and the use of electronic detonators in rock roadways.
基金National Natural Science Foundation of China (No. 51304087) Foundation Projects of Yun- nan Province (No. KKSY201404056, No. KKSA201121083)
文摘The scalloped medium-length hole blasting mining method used in Dahongshan Copper Mine accounted for more than 61%of the total amount of mining,but the large boulder yield restricted the intensity of ore supply for mines,and the average boulder yield was as high as 22.7%.In order to develop the mine production efficiency,the circular medium-length hole blasting technology was proposed and field tests were carried out.The test results showed that circular medium-length hole blasting mining can reduce the average boulder yield to 10.3%.Compared with the traditional scalloped medium-length hole blasting mining,the average boulder yield was decreased by 12.4%.The daily yield of ore for the panel on duty was increased by 152.29 t,and the growth rate was 51.1%.The new technology can reduce the time for the handling of boulder and the consumption of explosives and detonators for recrushing,and increase the efficiency of mining while reduce the mining cost,which has received good blasting effects.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
文摘The cavity formation and propagation process of stress wave from parallel hole cut blasting was simulated with ANSYS/LS-DYNA 3D nonlinear dynamic finite element software. The distribution of element plastic strain, node velocity, node time-acceleration history and the blasting cartridge volume ratio during the process were analyzed. It was found that the detonation of charged holes would cause the interaction of stress wave with the wall of uncharged holes. Initial rock cracking and displacement to neighboring uncharged holes become the main mechanism of cavity formation in early stage.2008 University of Science and Technology Beijing. All rights reserved.
文摘The blast-induced ground vibration prediction using scaled distance regression analysis is one of the most popular methods employed by engineers for many decades. It uses the maximum charge per delay and distance of monitoring as the major factors for predicting the peak particle velocity(PPV). It is established that the PPV is caused by the maximum charge per delay which varies with the distance of monitoring and site geology. While conducting a production blasting, the waves induced by blasting of different holes interfere destructively with each other, which may result in higher PPV than the predicted value with scaled distance regression analysis. This phenomenon of interference/superimposition of waves is not considered while using scaled distance regression analysis. In this paper, an attempt has been made to compare the predicted values of blast-induced ground vibration using multi-hole trial blasting with single-hole blasting in an opencast coal mine under the same geological condition. Further,the modified prediction equation for the multi-hole trial blasting was obtained using single-hole regression analysis. The error between predicted and actual values of multi-hole blast-induced ground vibration was found to be reduced by 8.5%.
文摘Based on experiments in lab, this paper analyzes the mechanism of directional broken controlled blasting and applies the technology to the cutting by utilizing its characteristic. The model cutting experiment and the practical application result show that the cutting blasting technology is an effective way.
文摘With the development of fracture mechanics,the fracture plane control blasting with notched borcholes hascome into being.This technique is used to create a satisfactory presplit along the contour of an excavation inrock.However,the amount of explosive loaded in each hol usually is determined by trial and error.Because ofthis,two approaches estimating the amount of explosive for the blasting technique are suggested.
文摘Enhancement of technology and techniques for drilling deep directed oil and gas bore hole is one of the most important problems of the current petroleum industry.Not infrequently, the drilling of these bore holes is attended by occurrence of extraordinary situations associated with technical accidents. Among these is the Eulerian loss of stability of a drill string in the channel of a curvilinear bore hole. Methods of computer simulation should play a dominant role in prediction of these states. In this paper, a new statement of the problem of critical buckling of the drill strings in 3D curvilinear bore holes is proposed. It is based on combined use of the theory of curvilinear elastic rods, Eulerian theory of stability, theory of channel surfaces, and methods of classical mechanics of systems with nonlinear constraints. It is noted that the stated problem is singularly perturbed and its solutions have the shapes of localized harmonic wavelets. The calculation results showed that the friction effects lead to essential redistribution of internal axial forces, as well as changing the eigenmode shapes and sites of their localization. These features make the buckling phenomena less predictable and raise the role of computer simulation of these effects.
文摘Reducing the blasting vibration is important for blasting excavation in subway tunnel construction.Taking the 3rd bid section of Line 3 of Qingdao subway project as an example,the distance between tunnel vault and ground is 5 ~ 8 m.In order to insure the safety of the upper buildings,technologies of parallel cut with large diameter empty hole,one-time initiation and delay by parts,and multiple shallow holes were adopted in the project.The results showed that the maximum value of vertical vibration was limited in the criterion allowance,and the upper buildings were not damaged.Besides,problems were solved that the number of nonel detonator was difficult to meet the requirements of excavating a large cross-section tunnel by blasting,multiple cross-section could’t be initiated simultaneously,and construction efficiency was low,which ensure the construction safety and schedule.
文摘Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form, gap size and gap angle. The cool tower was twisted, collapsed directionally and broken well according to the design requirements. The expected results and purposes of blasting were obtained with no back blow, total blasted pile approximates to 4 - 5 m, no occurrence of flying stones and no damage to fixed buildings and equipment, the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking. The test and measurement of blasting vibrating velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting. The study shows that gap form, gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.
基金National Natural Science Foundation of China (No. 51304087) Foundation Projects of Yun- nan Province (No. KKSY201404056, No. KKSA201121083)
文摘This paper numerically simulates the stress development and generates a three-dimensional model of the medium-length hole blasting in infinite rock mass for continuous charge and divided charge in blasting by using the large-scale nonlinear dynamic analysis software LS-DYNA and the elastic-plastic model ~*MAT_PLASTIC_KINEMATIC and JWO-EOS.The differences of the decreasing rate in Von Mises effective stress of blasting,element effective stress peak of free surface,bore wall stress and acceleration are investigated.It is shown that divided charge could greatly improve the blasting effect by engineering blasting practice.
文摘In holes, the measurement of the velocity of detonation(VOD) helps in comparing and evaluating relative performance of explosives. In this paper a blast performance assessment was conducted based on the results obtained from the steady state VOD measurement of emulsion explosives HEF100 and degree of blast fragmentation conducted on an open pit blast. The aim of this study was to compare the steady state VOD measured in the field and the published VOD of HEF100 under ideal laboratory conditions and ascertain its efficacy. In the trial, a resistance wire continuous VOD measurement system connected to a SpeedVOD was employed to measure and record the steady state VOD values from five different blast holes. Furthermore, a post fragmentation analysis was conducted using the existing fragmentation models and an image processing software. The steady state VOD values recorded from the field ranged between 4981 m/s to 5387 m/s consistent with the published VOD subjected to ideal laboratory conditions and the analyzed fragmentation size distribution indicates that 90% of the blasted muck pile was within the allowable and optimal 700 mm passing size.
基金This work was financially supported by the National Natural Science Foundation of China (No. 59974019)
文摘Time interval of short delay ignition is an important factor to affect theefficiency of blasting cuts. The motion process of rock pieces in the cut cavity is analyzed, amechanical model to calculate the delay time of parallel hole cuts is presented for tunnel blasting,and a theoretical method to determine the volume ratio (the clearage rate) of the rock pieceswithin the cut cavity at different moments is proposed for the blasting cut with an empty hole.Numerical analysis results show that the optimal delay interval is proportional to the boreholedepth. The suggested results are of practical value to the optimal design of the delay interval inmillisecond blasting related to the parallel hole cuts with an empty hole.
文摘With the innovation and development of offshore oil drilling technology, drilling wells in deep waters areas have become an important activity for the development of new hydrocarbon reservoirs in this type of environment. CNOOC (China National Offshore Oil Corporation) won the rights to exploit two unexplored deepwater blocks in the Gulf of Mexico, in a bid realized by the Mexican Government (CNH), in 2016. The challenge to combine the newest technology with the oil industry experienced knowledge to lead the exploration and development of these deep-water blocks in Mexico is around the corner. Therefore, the basic techniques for deep waters wells drilling and the main potential risks are expounded in this paper. A set of deep waters wells drilling processes and methodologies are previously designed, and a specific case is demonstrated next, which provides a referential model for deep waters wells drilling in the Gulf of Mexico.
文摘The proline iminopeptidase (PchPiPA) of the white-rot fungi Phanerochaete chrysosporium is an exopeptidase specific to catalyze hydrolysis of the N-terminal proline of peptides or proteins. Its catalytic cavity is comprised of a catalytic triad (Ser107, Asp264 and His292) and an oxyanion hole (His38, Gly39, Gly40 and Pro41). In this work, several amino acid residues involved in the catalytic cavity were selected for investigation of their influences on the catalytic activity by site-directed mutagenesis. It was shown that mutation of residues (Gly39 and Gly40) involved in oxyanion hole resulted in almost complete loss of catalytic activity largely due to changes in kcat. The other residues (Gly42 and Cys45) lined at the entrance of the active cavity also yielded a profound negative effect on the activity. Mutation of the other two residues Arg130 and Gly131 which were flanked spatially by the nucleophilic attacking active site of Ser107, caused different effects on the activity. R130Aincreased catalytic efficiency due to changes in both kcat and Km;while G131V decreased the value of kcat/Km mainly due to changes in kcat. And T111Aalso caused a negative effect on the kcat. Conclusively, these amino acid residues involved in active cavity were more susceptible to be negatively affected by mutation, suggested that the active cavity of proline iminopeptidase might evolve to be less plausible.
文摘A model recognition method for the on-line optimal control of the parameters ofthree-cone blast drills is developed. It takes a few of on-line measurements and has a rapidoptimization speed. The mathematic model for on-line optimal control of the parameters and thedetermination of the parameters in the model are also presented.
基金the financial support by the National Natural Science Foundation of China(NSFC)(52178324).
文摘Bench blasting is commonly used in open-pit mining.Some design parameters such as positions of hole packing and caving holes have great influences on the blasting effects.In this work,with a hybrid discrete-finite element method,numerical simulations of bench blasting are conducted,capturing the whole continuous-discontinuous processes.Considering two engineering cases,the influences of hole packing and caving holes are evaluated.The numerical results not only lead to some improved designs by relocating the packing positions and caving holes but also indicate the reliability of the adopted numerical tools.
基金supported by the National Natural Science Foundation of China(Nos.51874277 and 41977238)the National Science Fund for Excellent Young Scholars of China(No.52122404).
文摘Rolled static cracking agent(RSCA)can solve the intractable problem of traditional bulk static cracking agent(BSCA)in engineering applications.This paper innovatively studies the rational water-cement ratio of BSCA and the immersion soaking time of RSCA under the condition of controlling temperature.Through the expansion and cracking performance experiments,the development characteristics of expansion pressure,the cracking effect of the single-hole specimen and the performance of hole spraying prevention under the action of BSCA and RSCA were compared and analyzed.The results show that:(1)The volume growth rate of static cracking agent decreases with the increase of water-cement ratio,and the fluidity increases with the increase of water-cement ratio.The rational water-cement ratio for BSCA application is 0.3,and the rational immersion time of RSCA is 2-2.5 min;(2)Under the bore diameters of 30,35,40 and 45 mm,the expansion pressure of BSCA with a water-cement ratio of 0.3 is 38.2,52.3,61.5 and 68 MPa,and the expansion pressure of RSCA immersed in water for 2.5 min is 43.5,58.8,69.5 and 75.1 MPa,respectively.Among them,the development speed of expansion pressure of BSCA is higher than that of RSCA,and the arrival time of the peak expansion pressure of RSCA is 1.7 times that of BSCA;(3)The crack initiation speed of single-hole specimen under the action of RSCA is 10.3%lower than that under the action of BSCA,but the cracking speed of the former is 72.6%higher than that of the latter;(4)The hole spraying occurs in BSCA under the bore diameter of 50,55 and 60 mm,while the hole spraying occurs in RSCA under the bore diameter of 60 mm.In terms of bore diameter,the hole spraying prevention of the RSCA is better than that of BSCA.The research results enrich the static blasting technology and provide data support and theoretical reference for field application.
文摘The dynamic stress-fields and their distribution characteristics around boreholes in the directed crack blasting were measured with the dynamic photo-elastic laser holography apparatus and the ultradymamic measurement system. The directed crack mechanism and its mechanical model have been analysed and expounded. Through the 43 production experiments using slotted cartridges and the double triangle center cut-holes for directed crack blasting in underground rock drift, the results of which the rates of half-hole marks and efficiency of borehole,and the nonsmooth grades of the cut contours are 96%, 98% and 10cm respectively have been achieved.