An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. Fr...An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.展开更多
The Goda's method of separating the frequency spectrum of the unidirectional incident and reflected waves is improved. The proposed method can be applied to the separation of oblique incident and reflected waves a...The Goda's method of separating the frequency spectrum of the unidirectional incident and reflected waves is improved. The proposed method can be applied to the separation of oblique incident and reflected waves and the two wave gauges can be arranged in an arbitrary angle in front of a structure. When the projected distance of the two probes on the incident wave direction is the multiple ofthe half length of the incident waves, the singular problem will emerge by using the method. It is advised that when the projected distance of the two measured points on the incident wave direction is 0.05~0.45 times the wave length of peak frequency wave, good results can be obtained. The simulated resultant waves are separated by the method of numerical simulation and the separated wave spectra are basically corresponding to the target spectra input. The wave trains calculated by the separated incident and reflected wave frequency spectrum are approximated to the input wave trains and the reflected coefficient can be derived correctly. Therefore, the method proposed in this paper is reliable.展开更多
A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be ...A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).展开更多
基金sponsored by the National Natural Science Foundation of China (Nos. 40774069 and 40974074)the State Key Program of National Natural Science of China (No. 40830424)the National 973program (No. 007209603)
文摘An approximation for the one-way wave operator takes the form of separated space and wave-number variables and makes it possible to use the FFT, which results in a great improvement in the computational efficiency. From the function approximation perspective, the OSA method shares the same separable approximation format to the one-way wave operator as other separable approximation methods but it is the only global function approximation among these methods. This leads to a difference in the phase error curve, impulse response, and migration result from other separable approximation methods. The difference is that the OSA method has higher accuracy, and the sensitivity to the velocity variation declines with increasing order.
文摘The Goda's method of separating the frequency spectrum of the unidirectional incident and reflected waves is improved. The proposed method can be applied to the separation of oblique incident and reflected waves and the two wave gauges can be arranged in an arbitrary angle in front of a structure. When the projected distance of the two probes on the incident wave direction is the multiple ofthe half length of the incident waves, the singular problem will emerge by using the method. It is advised that when the projected distance of the two measured points on the incident wave direction is 0.05~0.45 times the wave length of peak frequency wave, good results can be obtained. The simulated resultant waves are separated by the method of numerical simulation and the separated wave spectra are basically corresponding to the target spectra input. The wave trains calculated by the separated incident and reflected wave frequency spectrum are approximated to the input wave trains and the reflected coefficient can be derived correctly. Therefore, the method proposed in this paper is reliable.
基金Project supported by the National Natural Science Foundation of China(Nos.11472189 and11332007)
文摘A direct numerical simulation (DNS) on an oblique shock wave with an incident angle of 33.2° impinging on a Mach 2.25 supersonic turbulent boundary layer is performed. The numerical results are confirmed to be of high accuracy by comparison with the reference data. Particular efforts have been made on the investigation of the near-wall behaviors in the interaction region, where the pressure gradient is so significant that a certain separation zone emerges. It is found that, the traditional linear and loga- rithmic laws, which describe the mean-velocity profiles in the viscous and meso sublayers, respectively, cease to be valid in the neighborhood of the interaction region, and two new laws of the wall are proposed by elevating the pressure gradient to the leading order. The new laws are inspired by the analysis on the incompressible separation flows, while the compressibility is additionally taken into account. It is verified by the DNS results that the new laws are adequate to reproduce the mean-velocity profiles both inside and outside the interaction region. Moreover, the normalization adopted in the new laws is able to regularize the Reynolds stress into an almost universal distribution even with a salient adverse pressure gradient (APG).