期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
利用方向性粗糙度特征对SAR图像目标检测的研究 被引量:4
1
作者 胡风明 范学花 +1 位作者 杨汝良 商建 《测绘学报》 EI CSCD 北大核心 2009年第3期229-235,共7页
从反映纹理信息的粗糙度特征出发,深入研究利用方向性粗糙度特征对SAR图像进行目标检测的方法。方向性粗糙度特征是用指数小波在一个尺度上对检测图像滤波,对特定大小目标用能量关系函数求得各像素点在一个方向上的分形特征。针对MSTAR... 从反映纹理信息的粗糙度特征出发,深入研究利用方向性粗糙度特征对SAR图像进行目标检测的方法。方向性粗糙度特征是用指数小波在一个尺度上对检测图像滤波,对特定大小目标用能量关系函数求得各像素点在一个方向上的分形特征。针对MSTAR数据和ADTS数据的SAR图像,确定了用该方法检测目标时的最优参数。分别用方向性粗糙度特征和恒虚警率(CFAR)方法对上述两种不同波段的SAR图像进行目标检测,检测结果表明:方向性粗糙度特征能以更低虚警率检测出全部特定大小的目标,而且目标空间可分辨性好、位置指示准确。 展开更多
关键词 SAR 目标检测 指数小波 方向性粗糙度特征 CFAR
下载PDF
基于方向性粗糙度特征的SAR目标检测算法
2
作者 胡风明 杨汝良 《系统仿真学报》 CAS CSCD 北大核心 2010年第1期236-240,共5页
针对扩展分形(EF)特征检测SAR目标虚警率高的不足,提出了基于方向性粗糙度特征(Directional Roughness Feature,DRF)对SAR图像目标检测的算法。该算法用指数小波在一个尺度和任意一个方向θ(0 0<θ<900)上对SAR图像滤波,对滤波后... 针对扩展分形(EF)特征检测SAR目标虚警率高的不足,提出了基于方向性粗糙度特征(Directional Roughness Feature,DRF)对SAR图像目标检测的算法。该算法用指数小波在一个尺度和任意一个方向θ(0 0<θ<900)上对SAR图像滤波,对滤波后图像应用能量关系函数求各像素点的DRF进行目标检测。针对X波段和Ka波段的SAR图像,确定了用该算法检测目标的最优参数。分别用该算法和EF特征方法对不同波段SAR图像进行目标检测,结果表明该算法具有检测虚警率低和目标空间可分辨性高的优点。 展开更多
关键词 合成孔径雷达(sAR) 目标检测 指数小波 方向性粗糙度特征(drf) 扩展分形特征
下载PDF
Bridging the semantic gap with human perception based features for scene categorization
3
作者 Padmavati Shrivastava K.K.Bhoyar A.S.Zadgaonkar 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第3期387-406,共20页
Purpose–The purpose of this paper is to build a classification system which mimics the perceptual ability of human vision,in gathering knowledge about the structure,content and the surrounding environment of a real-w... Purpose–The purpose of this paper is to build a classification system which mimics the perceptual ability of human vision,in gathering knowledge about the structure,content and the surrounding environment of a real-world natural scene,at a quick glance accurately.This paper proposes a set of novel features to determine the gist of a given scene based on dominant color,dominant direction,openness and roughness features.Design/methodology/approach–The classification system is designed at two different levels.At the first level,a set of low level features are extracted for each semantic feature.At the second level the extracted features are subjected to the process of feature evaluation,based on inter-class and intra-class distances.The most discriminating features are retained and used for training the support vector machine(SVM)classifier for two different data sets.Findings–Accuracy of the proposed system has been evaluated on two data sets:the well-known Oliva-Torralba data set and the customized image data set comprising of high-resolution images of natural landscapes.The experimentation on these two data sets with the proposed novel feature set and SVM classifier has provided 92.68 percent average classification accuracy,using ten-fold cross validation approach.The set of proposed features efficiently represent visual information and are therefore capable of narrowing the semantic gap between low-level image representation and high-level human perception.Originality/value–The method presented in this paper represents a new approach for extracting low-level features of reduced dimensionality that is able to model human perception for the task of scene classification.The methods of mapping primitive features to high-level features are intuitive to the user and are capable of reducing the semantic gap.The proposed feature evaluation technique is general and can be applied across any domain. 展开更多
关键词 OPENNESS roughness Human perception JND P-VALUE Scene classification Semantic gap feature elevation Dominant direction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部