Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this ...Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.展开更多
马铃薯是世界性粮蔬作物。致病疫霉引起的晚疫病则是马铃薯育种所面临的最严峻问题之一,因此,分离和利用马铃薯晚疫病抗性基因获得抗病新品种是马铃薯育种的重要目标。首先在连翘中发现的一类与木质素合成相关的Dirigent基因可能在植物...马铃薯是世界性粮蔬作物。致病疫霉引起的晚疫病则是马铃薯育种所面临的最严峻问题之一,因此,分离和利用马铃薯晚疫病抗性基因获得抗病新品种是马铃薯育种的重要目标。首先在连翘中发现的一类与木质素合成相关的Dirigent基因可能在植物抗病虫害过程中起重要作用。试验根据马铃薯的EST序列信息设计特异性引物,并通过RT-PCR和RACE技术获得了一条全长为729 bp的Dirigent基因cDNA序列,命名为StDIR1;该cDNA编码一个包含191个氨基酸的蛋白质多肽;系统进化分析表明,该多肽是一种Dirigent-like蛋白,属于DIR-b亚群,与陆地棉Di-rigent-like protein 1相似性高达76%,同一性为62%。利用半定量RT-PCR技术分析发现,致病疫霉、H2O2以及NO可以诱导该基因不同程度的上调表达。组织特异性分析表明,该基因在马铃薯根组织中表达量最高,而在茎、叶、花以及块茎组织中的表达量偏低。首次表明StDIR1基因与马铃薯对致病疫霉的侵染应答具有相关性。展开更多
Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the di...Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease. In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by twodimensional gel electrophoresis. Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay. One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family. Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1). Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean. GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane. qRTPCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars. By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties. The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions. The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs. The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.展开更多
Phytophthora sojae infection severely impairs soybean production. We previously identified a dirigent protein, Gm DRR1(Glycine max Disease Resistant Response 1), that increases soybean resistance to P.sojae. However, ...Phytophthora sojae infection severely impairs soybean production. We previously identified a dirigent protein, Gm DRR1(Glycine max Disease Resistant Response 1), that increases soybean resistance to P.sojae. However, the molecular basis of Gm DRR1 function remained largely uncharacterized. In the present study, analysis of Gm DRR1-RNAi, Gm DRR1-overexpressing, and CRISPR/Cas9-derived Gmdrr1 mutant lines revealed that Gm DRR1 expression significantly restricted P. sojae growth. Combining coimmunoprecipitation with liquid chromatography–tandem mass spectrometry revealed a Gm DRR1-interacting protein, Gm DRR2, which is homologous to Gm DRR1. An E-coniferyl alcohol coupling assay indicated that Gm DRR1 promotes the synthesis of(+)-pinoresinol, which helps to protect plants from P. sojae. The Gm NAC1(Glyma.05 G025500) transcription factor bound to the Gm DRR1 promoter both in vitro and in vivo to upregulate Gm DRR1 expression. Soybean resistance to P. sojae was increased by overexpression of Gm NAC1. Our findings suggest a novel signaling pathway involving a NAC transcription factor that mediates soybean resistance to P. sojae. Specifically, Gm NAC1 directly induces Gm DRR1 expression to increase resistance of soybean plants to P. sojae.展开更多
Plants adaptively change their cell wall composition and structure during their growth,development,and interactions with environmental stresses.Dirigent proteins(DIRs)contribute to environmental adaptations by dynamic...Plants adaptively change their cell wall composition and structure during their growth,development,and interactions with environmental stresses.Dirigent proteins(DIRs)contribute to environmental adaptations by dynamically reorganizing the cell wall and/or by generating defense compounds.A maize DIR,ZmDRR206,was previously reported to play a dominant role in regulation of storage nutrient accumulation in endosperm during maize kernel development.Here we show that ZmDRR206 mediates maize seedling growth and disease resistance by coordinately regulating biosynthesis of cell wall components for cell-wall integrity(CWI)maintenance.Expression of ZmDRR206 was induced in maize seedlings upon pathogen infection.ZmDRR206 overexpression in maize resulted in reduced seedling growth and photosynthetic activity but increased disease resistance and drought tolerance,revealing a tradeoff between growth and defense.Consistently,ZmDRR206 overexpression reduced the contents of primary metabolites and down-regulated genes involved in photosynthesis,while increasing the contents of major cell wall components,defense phytohormones,and defense metabolites,and up-regulated genes involved in defense and cell-wall biosynthesis in seedlings.ZmDRR206-overexpressing seedlings were resistant to cell-wall stress imposed by isoxaben,and ZmDRR206 physically interacted with ZmCesA10,which is a cellulose synthase unit.Our findings suggest a mechanism by which ZmDRR206 coordinately regulates biosynthesis of cell-wall components for CWI maintenance during maize seedling growth,and might be exploited for breeding strong disease resistance in maize.展开更多
Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health.Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans i...Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health.Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans is important for the guidance of plant improvement.Here,we identified the complete pathway to stereoselectively synthesize antiviral(-)-lariciresinol glucosides in Isatis indigotica roots,which consists of three-step sequential stereoselective enzymes DIR1/2,PLR,and UGT71B2.DIR1 was further identified as the key gene in respoJanuary 2024nse to stresses and was able to trigger stress defenses by mediating the elevation in lignan content.Mechanistically,the phytohormone-responsive ERF transcription factor LTF1 colocalized with DIR1 in the cell periphery of the vascular regions in mature roots and helped resist biotic and abiotic stresses by directly regulating the expression of DIR1.These systematic results suggest that DIR1 as the first common step of the lignan pathway cooperates with PLR and UGT71B2 to stereoselectively synthesize(-)-lariciresinol derived antiviral lignans in I.indigotica roots and is also a part of the LTF1-mediated regulatory network to resist stresses.In conclusion,the LTF1-DIR1 module is an ideal engineering target to improve plant Defenses while increasing the content of valuable lignans in plants.展开更多
Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized...Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad- spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses re- vealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.展开更多
基金National Natural Sciences Foundation of China(31760586).
文摘Lilium are highly economically valuable ornamental plants that are susceptible to Fusarium wilt caused by Fusarium oxysporum.Lilium regale Wilson,a wild lily native to China,is highly resistant to F.oxysporum.In this study,a WRKY transcription factor,WRKY11,was isolated from L.regale,and its function during the interaction between L.regale and F.oxysporum was characterized.The ectopic expression of LrWRKY11 in tobacco increased the resistance to F oxysporum,moreover,the transcriptome sequencing and UHPLC-MS/MS analysis indicated that the methyl salicylate and methyl jasmonate levels rose in LrWRKY11 transgenic tobacco,meanwhile,the expression of lignin/lignans biosynthesis-related genes including a dirigent(DiR)was up-regulated.The lignin/lignans contents in LrWRKY11-transgenic tobacco also significantly increased compared with the wild-type tobacco.In addition,the resistance of L.regale scales in which LrWRKY11 expression was silenced by RNAi evidently decreased,and additionally,the expression of lignin/lignans biosynthesis-related genes including LrDIR1 was significantly suppressed.Therefore,LrDIR1 and its promoter(PLrDIR1)sequence containing the W-box element were isolated from L.regale.The interaction assay indicated that LrWRKY11 specifically bound to the W-box element in PLrDIR1 and activated LrDIR1 expression.Additionally,β-glucuronidase activity in the transgenic tobacco co-expressing LrWRKY11/PLrDIR1-β-glucuronidase was higher than that in transgenic tobacco expressing PLrDIR1-β-glucuronidase alone.Furthermore,the ectopic expression of LrDIR1 in tobacco enhanced the resistance to F.oxysporum and increased the lignin/lignans accumulation.In brief,this study revealed that LrWRKY11 positively regulated L.regale resistance to F.oxysporum through interaction with salicylic acid/jasmonic acid signaling pathways and modulating LrDIR1 expression to accumulate lignin/lignans.
文摘马铃薯是世界性粮蔬作物。致病疫霉引起的晚疫病则是马铃薯育种所面临的最严峻问题之一,因此,分离和利用马铃薯晚疫病抗性基因获得抗病新品种是马铃薯育种的重要目标。首先在连翘中发现的一类与木质素合成相关的Dirigent基因可能在植物抗病虫害过程中起重要作用。试验根据马铃薯的EST序列信息设计特异性引物,并通过RT-PCR和RACE技术获得了一条全长为729 bp的Dirigent基因cDNA序列,命名为StDIR1;该cDNA编码一个包含191个氨基酸的蛋白质多肽;系统进化分析表明,该多肽是一种Dirigent-like蛋白,属于DIR-b亚群,与陆地棉Di-rigent-like protein 1相似性高达76%,同一性为62%。利用半定量RT-PCR技术分析发现,致病疫霉、H2O2以及NO可以诱导该基因不同程度的上调表达。组织特异性分析表明,该基因在马铃薯根组织中表达量最高,而在茎、叶、花以及块茎组织中的表达量偏低。首次表明StDIR1基因与马铃薯对致病疫霉的侵染应答具有相关性。
基金financially supported by the Academic Skeleton Support Plan of Department of Education of Heilongjiang Province,China (1254G011)the National Natural Science Foundation of China (31271747,31471516,31400074,31401465,31501332)+3 种基金the National High-Tech R&D Program of China (the 863 Program,2013AA102602)the Research Fund for the Doctoral Program of Higher Education of China (20122325120015)the Academic Backbone Project of Northeast Agricultural University,China (15XG02)the Talented Young Project of Northeast Agricultural University,China (518062)
文摘Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease. In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by twodimensional gel electrophoresis. Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay. One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family. Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1). Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean. GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane. qRTPCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars. By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties. The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions. The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs. The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.
基金supported by the National Natural Science Foundation of China(U20A2027,32070274,32072014)the Heilongjiang Postdoctoral Science Foundation(LBH-Q16014)。
文摘Phytophthora sojae infection severely impairs soybean production. We previously identified a dirigent protein, Gm DRR1(Glycine max Disease Resistant Response 1), that increases soybean resistance to P.sojae. However, the molecular basis of Gm DRR1 function remained largely uncharacterized. In the present study, analysis of Gm DRR1-RNAi, Gm DRR1-overexpressing, and CRISPR/Cas9-derived Gmdrr1 mutant lines revealed that Gm DRR1 expression significantly restricted P. sojae growth. Combining coimmunoprecipitation with liquid chromatography–tandem mass spectrometry revealed a Gm DRR1-interacting protein, Gm DRR2, which is homologous to Gm DRR1. An E-coniferyl alcohol coupling assay indicated that Gm DRR1 promotes the synthesis of(+)-pinoresinol, which helps to protect plants from P. sojae. The Gm NAC1(Glyma.05 G025500) transcription factor bound to the Gm DRR1 promoter both in vitro and in vivo to upregulate Gm DRR1 expression. Soybean resistance to P. sojae was increased by overexpression of Gm NAC1. Our findings suggest a novel signaling pathway involving a NAC transcription factor that mediates soybean resistance to P. sojae. Specifically, Gm NAC1 directly induces Gm DRR1 expression to increase resistance of soybean plants to P. sojae.
基金the Ministry of Agriculture and Rural Affairs of the People’s Republic of China(2018ZX0800917B)grant from Yunnan Provincial Science and Technology Department(202005AF150026).
文摘Plants adaptively change their cell wall composition and structure during their growth,development,and interactions with environmental stresses.Dirigent proteins(DIRs)contribute to environmental adaptations by dynamically reorganizing the cell wall and/or by generating defense compounds.A maize DIR,ZmDRR206,was previously reported to play a dominant role in regulation of storage nutrient accumulation in endosperm during maize kernel development.Here we show that ZmDRR206 mediates maize seedling growth and disease resistance by coordinately regulating biosynthesis of cell wall components for cell-wall integrity(CWI)maintenance.Expression of ZmDRR206 was induced in maize seedlings upon pathogen infection.ZmDRR206 overexpression in maize resulted in reduced seedling growth and photosynthetic activity but increased disease resistance and drought tolerance,revealing a tradeoff between growth and defense.Consistently,ZmDRR206 overexpression reduced the contents of primary metabolites and down-regulated genes involved in photosynthesis,while increasing the contents of major cell wall components,defense phytohormones,and defense metabolites,and up-regulated genes involved in defense and cell-wall biosynthesis in seedlings.ZmDRR206-overexpressing seedlings were resistant to cell-wall stress imposed by isoxaben,and ZmDRR206 physically interacted with ZmCesA10,which is a cellulose synthase unit.Our findings suggest a mechanism by which ZmDRR206 coordinately regulates biosynthesis of cell-wall components for CWI maintenance during maize seedling growth,and might be exploited for breeding strong disease resistance in maize.
基金The authors would like to acknowledge Professor Jiankang Zhu and his lab at the Shanghai Center for Plant Stress Biology,Chinese Center for Plant Stress Biology,for providing the CRISPR/Cas9 system plasmids.All authors declare no competing financial or nonfinancial interests.This work was funded by the National Natural Science Foundation of China(grant Nos.82225047,32000231,31970316,and 32170274)the National Key Research and Development Program of China(grant no.2022YFC3501703)+1 种基金Shanghai Science and Technology Development Funds(23QA1411400,China)Key project at central government level(The ability establishment of sustainable use for valuable Chinese medicine resources,2060302).
文摘Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health.Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans is important for the guidance of plant improvement.Here,we identified the complete pathway to stereoselectively synthesize antiviral(-)-lariciresinol glucosides in Isatis indigotica roots,which consists of three-step sequential stereoselective enzymes DIR1/2,PLR,and UGT71B2.DIR1 was further identified as the key gene in respoJanuary 2024nse to stresses and was able to trigger stress defenses by mediating the elevation in lignan content.Mechanistically,the phytohormone-responsive ERF transcription factor LTF1 colocalized with DIR1 in the cell periphery of the vascular regions in mature roots and helped resist biotic and abiotic stresses by directly regulating the expression of DIR1.These systematic results suggest that DIR1 as the first common step of the lignan pathway cooperates with PLR and UGT71B2 to stereoselectively synthesize(-)-lariciresinol derived antiviral lignans in I.indigotica roots and is also a part of the LTF1-mediated regulatory network to resist stresses.In conclusion,the LTF1-DIR1 module is an ideal engineering target to improve plant Defenses while increasing the content of valuable lignans in plants.
文摘Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad- spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses re- vealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.