Agricultural investment project selection is a complex multi-criteria decision-making problem,as agricultural projects are easily influenced by various risk factors,and the evaluation information provided by decisionm...Agricultural investment project selection is a complex multi-criteria decision-making problem,as agricultural projects are easily influenced by various risk factors,and the evaluation information provided by decisionmakers usually involves uncertainty and inconsistency.Existing literature primarily employed direct preference elicitation methods to address such issues,necessitating a great cognitive effort on the part of decision-makers during evaluation,specifically,determining the weights of criteria.In this study,we propose an indirect preference elicitation method,known as a preference disaggregation method,to learn decision-maker preference models fromdecision examples.To enhance evaluation ease,decision-makers merely need to compare pairs of alternatives with which they are familiar,also known as reference alternatives.Probabilistic linguistic preference relations are employed to account for the presence of incomplete and uncertain information in such pairwise comparisons.To address the inconsistency among a group of decision-makers,we develop a pair of 0-1mixed integer programming models that consider both the semantics of linguistic terms and the belief degrees of decision-makers.Finally,we conduct a case study and comparative analysis.Results reveal the effectiveness of the proposed model in solving agricultural investment project selection problems with uncertain and inconsistent decision information.展开更多
以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对...以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。展开更多
Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-...Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-specific agricultural management and environmental modelling.We examined the utility of legacy pedon data for disaggregating soil polygons and the effectiveness of similarity-based prediction for making use of the under-or over-sampled legacy pedon data for the disaggregation.The method consisted of three steps.First,environmental similarities between the pedon sites and each location were computed based on soil formative environmental factors.Second,according to soil types of the pedon sites,the similarities were aggregated to derive similarity distribution for each soil type.Third,a hardening process was performed on the maps to allocate candidate soil types within the polygons.The study was conducted at the soil subgroup level in a semi-arid area situated in Manitoba,Canada.Based on 186 independent pedon sites,the evaluation of the disaggregated map of soil subgroups showed an overall accuracy of 67% and a Kappa statistic of 0.62.The map represented a better spatial pattern of soil subgroups in both detail and accuracy compared to a dominant soil subgroup map,which was commonly used in practice.Incorrect predictions mainly occurred in the agricultural plain area and the soil subgroups that are very similar in taxonomy,indicating that new environmental covariates need to be developed.We concluded that the combination of legacy pedon data with similarity-based prediction is an effective solution for soil polygon disaggregation.展开更多
As the intermittency and uncertainty of photovoltaic(PV)power generation poses considerable challenges to the power system operation,accurate PV generation estimates are critical for the distribution operation,mainten...As the intermittency and uncertainty of photovoltaic(PV)power generation poses considerable challenges to the power system operation,accurate PV generation estimates are critical for the distribution operation,maintenance,and demand response program implementation because of the increasing usage of distributed PVs.Currently,most residential PVs are installed behind the meter,with only the net load available to the utilities.Therefore,a method for disaggregating the residential PV generation from the net load data is needed to enhance the grid-edge observability.In this study,an unsupervised PV capacity estimation method based on net metering data is proposed,for estimating the PV capacity in the customer’s premise based on the distribution characteristics of nocturnal and diurnal net load extremes.Then,the PV generation disaggregation method is presented.Based on the analysis of the correlation between the nocturnal and diurnal actual loads and the correlation between the PV capacity and their actual PV generation,the PV generation of customers is estimated by applying linear fitting of multiple typical solar exemplars and then disaggregating them into hourly-resolution power profiles.Finally,the anomalies of disaggregated PV power are calibrated and corrected using the estimated capacity.Experiment results on a real-world hourly dataset involving 260 customers show that the proposed PV capacity estimation method achieves good accuracy because of the advantages of robustness and low complexity.Compared with the state-of-the-art PV disaggregation algorithm,the proposed method exhibits a reduction of over 15%for the mean absolute percentage error and over 20%for the root mean square error.展开更多
With the benefits of increased computing power and much improved software,temporal disaggregation is examined.Disaggregation,the process of obtaining high frequency data from low frequency data has been discussed for ...With the benefits of increased computing power and much improved software,temporal disaggregation is examined.Disaggregation,the process of obtaining high frequency data from low frequency data has been discussed for many years.This study examines three methods which utilize the autoregressive integrated moving average(ARIMA)model in a simulation study comparing parameter estimation,disaggregation mean square error,and forecast mean square error.Finally,the three methods are applied to a real-world time series.展开更多
文摘Agricultural investment project selection is a complex multi-criteria decision-making problem,as agricultural projects are easily influenced by various risk factors,and the evaluation information provided by decisionmakers usually involves uncertainty and inconsistency.Existing literature primarily employed direct preference elicitation methods to address such issues,necessitating a great cognitive effort on the part of decision-makers during evaluation,specifically,determining the weights of criteria.In this study,we propose an indirect preference elicitation method,known as a preference disaggregation method,to learn decision-maker preference models fromdecision examples.To enhance evaluation ease,decision-makers merely need to compare pairs of alternatives with which they are familiar,also known as reference alternatives.Probabilistic linguistic preference relations are employed to account for the presence of incomplete and uncertain information in such pairwise comparisons.To address the inconsistency among a group of decision-makers,we develop a pair of 0-1mixed integer programming models that consider both the semantics of linguistic terms and the belief degrees of decision-makers.Finally,we conduct a case study and comparative analysis.Results reveal the effectiveness of the proposed model in solving agricultural investment project selection problems with uncertain and inconsistent decision information.
文摘以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。
基金supported by the National Natural Science Foundation of China (41130530,91325301,41431177,41571212,41401237)the Project of "One-Three-Five" Strategic Planning & Frontier Sciences of the Institute of Soil Science,Chinese Academy of Sciences (ISSASIP1622)+1 种基金the Government Interest Related Program between Canadian Space Agency and Agriculture and Agri-Food,Canada (13MOA01002)the Natural Science Research Program of Jiangsu Province (14KJA170001)
文摘Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-specific agricultural management and environmental modelling.We examined the utility of legacy pedon data for disaggregating soil polygons and the effectiveness of similarity-based prediction for making use of the under-or over-sampled legacy pedon data for the disaggregation.The method consisted of three steps.First,environmental similarities between the pedon sites and each location were computed based on soil formative environmental factors.Second,according to soil types of the pedon sites,the similarities were aggregated to derive similarity distribution for each soil type.Third,a hardening process was performed on the maps to allocate candidate soil types within the polygons.The study was conducted at the soil subgroup level in a semi-arid area situated in Manitoba,Canada.Based on 186 independent pedon sites,the evaluation of the disaggregated map of soil subgroups showed an overall accuracy of 67% and a Kappa statistic of 0.62.The map represented a better spatial pattern of soil subgroups in both detail and accuracy compared to a dominant soil subgroup map,which was commonly used in practice.Incorrect predictions mainly occurred in the agricultural plain area and the soil subgroups that are very similar in taxonomy,indicating that new environmental covariates need to be developed.We concluded that the combination of legacy pedon data with similarity-based prediction is an effective solution for soil polygon disaggregation.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202112507A-0-5-ZN)the National Nature Science Foundation for Young Scholars of China(No.52107120).
文摘As the intermittency and uncertainty of photovoltaic(PV)power generation poses considerable challenges to the power system operation,accurate PV generation estimates are critical for the distribution operation,maintenance,and demand response program implementation because of the increasing usage of distributed PVs.Currently,most residential PVs are installed behind the meter,with only the net load available to the utilities.Therefore,a method for disaggregating the residential PV generation from the net load data is needed to enhance the grid-edge observability.In this study,an unsupervised PV capacity estimation method based on net metering data is proposed,for estimating the PV capacity in the customer’s premise based on the distribution characteristics of nocturnal and diurnal net load extremes.Then,the PV generation disaggregation method is presented.Based on the analysis of the correlation between the nocturnal and diurnal actual loads and the correlation between the PV capacity and their actual PV generation,the PV generation of customers is estimated by applying linear fitting of multiple typical solar exemplars and then disaggregating them into hourly-resolution power profiles.Finally,the anomalies of disaggregated PV power are calibrated and corrected using the estimated capacity.Experiment results on a real-world hourly dataset involving 260 customers show that the proposed PV capacity estimation method achieves good accuracy because of the advantages of robustness and low complexity.Compared with the state-of-the-art PV disaggregation algorithm,the proposed method exhibits a reduction of over 15%for the mean absolute percentage error and over 20%for the root mean square error.
文摘With the benefits of increased computing power and much improved software,temporal disaggregation is examined.Disaggregation,the process of obtaining high frequency data from low frequency data has been discussed for many years.This study examines three methods which utilize the autoregressive integrated moving average(ARIMA)model in a simulation study comparing parameter estimation,disaggregation mean square error,and forecast mean square error.Finally,the three methods are applied to a real-world time series.