Extreme meteorological disaster effects on grain production is mainly determined by the interaction between danger degree of hazard-induced factors and vulnerability degree of hazard-affected bodies. This paper treats...Extreme meteorological disaster effects on grain production is mainly determined by the interaction between danger degree of hazard-induced factors and vulnerability degree of hazard-affected bodies. This paper treats physical exposure, sensitivity of the response to the impact, and capabilities of disaster prevention and mitigation as a complex system for vulnerability degree of hazard-affected bodies, which included the external shocks and internal stability mechanism. Hazard-induced factors generate external shocks on grain production systems though exposure and sensitivity of hazard-affected body, and the result can be represented as affected area of grain. By quantile regression model, this paper depicts the quantitative relationship between hazard-induced factors of extreme meteorological disaster and the affected area in the tail of the distri- bution. Moreover, the model of production function have also been utilized to expound and prove the quantitative relationship between the affected area and final grain output under the internal stability mechanism of the agricultural natural resources endowment, the input factors of agricultural production, and the capacity of defending disaster. The empirical study of this paper finds that impact effects of drought disaster to grain production system presents the basic law of "diminishing marginal loss", namely, with the constant improvement of the grade of drought, marginal affected area produced by hazard-induced factors will be diminishing. Scenario simulation of extreme drought impact shows that by every 1% reduction in summer average rainfall, grain production of Jilin Province will fell 0.2549% and cut production of grain 14.69% eventually. In re- sponse to ensure China's grain security, the construction of the long-term mechanism of agricultural disaster prevention and mitigation, and the innovation of agricultural risk management tools should be also included in the agricultural policy agenda.展开更多
Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ...Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.展开更多
There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources ...There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.展开更多
基金funded by the National Natural Science Foundation of China (41201551)the Project of Science and Technology Innovation in Chinese Academy of Agricultural Science (CAAS-ASTIP-201X-AII-01)the Central Public-interest Scientific Institution Basal Research Fund in Agricultural Information Institute of CAAS (2015-J-16)
文摘Extreme meteorological disaster effects on grain production is mainly determined by the interaction between danger degree of hazard-induced factors and vulnerability degree of hazard-affected bodies. This paper treats physical exposure, sensitivity of the response to the impact, and capabilities of disaster prevention and mitigation as a complex system for vulnerability degree of hazard-affected bodies, which included the external shocks and internal stability mechanism. Hazard-induced factors generate external shocks on grain production systems though exposure and sensitivity of hazard-affected body, and the result can be represented as affected area of grain. By quantile regression model, this paper depicts the quantitative relationship between hazard-induced factors of extreme meteorological disaster and the affected area in the tail of the distri- bution. Moreover, the model of production function have also been utilized to expound and prove the quantitative relationship between the affected area and final grain output under the internal stability mechanism of the agricultural natural resources endowment, the input factors of agricultural production, and the capacity of defending disaster. The empirical study of this paper finds that impact effects of drought disaster to grain production system presents the basic law of "diminishing marginal loss", namely, with the constant improvement of the grade of drought, marginal affected area produced by hazard-induced factors will be diminishing. Scenario simulation of extreme drought impact shows that by every 1% reduction in summer average rainfall, grain production of Jilin Province will fell 0.2549% and cut production of grain 14.69% eventually. In re- sponse to ensure China's grain security, the construction of the long-term mechanism of agricultural disaster prevention and mitigation, and the innovation of agricultural risk management tools should be also included in the agricultural policy agenda.
基金Supported by the Project of National Basic Research Program of China(973 Program)(2005CB221505)the Significant Project of National Natural Science Fund(50534080/E041503)the Project of Coal Mine Gas and Fire Hazard Prevention Major Lab in Henan Province(HKLGF200508)
文摘Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program,grant number 2019QZKK0905the National Natural Science Foundation of China,grant number 42272339,42201162,42101121the Research Project of the State Key Laboratory of Frozen Soils Engineering,grant number SKLFSE-ZQ-58,SKLFSE-ZT-202203,SKLFSE-ZY-20.
文摘There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.