Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilizatio...Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.展开更多
The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holdin...The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.展开更多
As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS...As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.展开更多
Dongying City, which is the most important central city in the Yellow River Delta, is located in the estuary of the Yellow River. With a short land formation time, ecological environment is very weak in this area. To ...Dongying City, which is the most important central city in the Yellow River Delta, is located in the estuary of the Yellow River. With a short land formation time, ecological environment is very weak in this area. To realize the sustainable economic development of the Yellow River Delta, resource environment and resource environmental bearing capacity(REBC) must be improved. This study builds assessment system of regional REBC through resource and economic characteristics in Yellow River Delta and uses principal component analysis(PCA) method to evaluate REBC of five counties and districts in Dongying City in 2011-2015 on the dimensions of time and space. Results show that, on the time dimension, Guangrao County is ranked first, Dongying district second for four years and Hekou and Kenli districts with lower ranks in 2012-2015, indicating that more attention needs to be paid to REBC of Hekou and Dongying districts and these two districts should be included into key monitoring areas. From space scale, REBC in five counties and districts has been gradually improving. In order to further develop REBC in Dongying City, measures such as intensifying protection of urban ecological environment and developing circular economy, etc. should be implemented.展开更多
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world’s 21 major rivers to the ocean because its middle reaches flow acros...The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world’s 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea展开更多
In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment ...In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×10^9 m^3 and 3.41×10^8 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×10^10 m^3 and 2.42×10^8 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×10^8 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×10^8t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4-26.0 kg/m^3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.展开更多
Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Liji...Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.展开更多
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev...As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.展开更多
[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi P...[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources.展开更多
Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its...Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland.展开更多
River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-...River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.展开更多
River's healthy life is a description of their living conditions, and it is also a comprehensive assessment of river's functions and relations with the human society. Through analyzing the demands of human being and...River's healthy life is a description of their living conditions, and it is also a comprehensive assessment of river's functions and relations with the human society. Through analyzing the demands of human being and river ecosystem, the continuous flow, safe river channel for water and sediment transportation, good water quality, sustainable river ecosystem and water supply capacity are regarded as symbols of the healthy Yellow River. Minimum flow, maximum flood discharging capacity, bank-full discharge, transverse slope of floodplain, water quality degree, wetlands area, aquatic ecosystem, and water supply capacity, altogether eight quantitative indicators are set as symbols of healthy Yellow River, and their corresponding standards are determined based on the analysis with historical hydrological data and observed data of 1956-2004.展开更多
The Tumen River had failed to meet Grade Ⅲ and Ⅳ levels in the environmental quality standard for surface water, and had exceeded Grade Ⅴ level. Surface water pollution is serious. The major excessive standard poll...The Tumen River had failed to meet Grade Ⅲ and Ⅳ levels in the environmental quality standard for surface water, and had exceeded Grade Ⅴ level. Surface water pollution is serious. The major excessive standard pollutants were COD Mn and SS. After taking effective treatment steps, the worsening trend of water pollution will be basically under control. But the change of runoff in the Tumen River is large in a year, especially during as long as five month freezing period, smaller flow and lower temperature of river waters led to weak dilution and self purification capacity. The water quality of the Tumen River will not reach the appoint functional water quality standards, even if sewage meets discharge standard, which will influence water resources utilization in the lower reaches of the Tumen River and regional economic development. Therefore water pollution has become the major restrictive factor of the development of the Tumen River area.展开更多
It is of necessity to investigate the adjustment of flood discharge capacity in the Lower Yellow River(LYR)because of its profound importance in sediment transport and flood control decision-making,and additionally it...It is of necessity to investigate the adjustment of flood discharge capacity in the Lower Yellow River(LYR)because of its profound importance in sediment transport and flood control decision-making,and additionally its magnitude is influenced by the channel and upstream boundary conditions,which have significantly varied with the ongoing implementation of soil and water conservation measures in the Loess Plateau and the operation of the Xiaolangdi Reservoir.The braided reach between two hydrometric stations of Huayuankou and Gaocun in the LYR was selected as the study area.Different parameters in the study reach during the period 1986-2015 were calculated,covering bankfull discharge(the indicator of flood discharge capacity),the pre-flood geomorphic coefficient(the indicator of channel boundary condition),and the previous five-year average fluvial erosion intensity during flood seasons(the indicator of incoming flow and sediment regime).Functional linkages at scales of section and reach were then developed respectively to quantitatively demonstrate the integrated effects of channel and upstream boundary conditions on the flood discharge capacity.Results show that:(1)the reach-scale bankfull discharge in the pre-dam stage(1986-1999)decreased rapidly by 50%,accompanied with severe channel aggradation and main-channel shrinkage.It recovered gradually as the geometry of main channel became narrower and deeper in the post-dam stage,with the geomorphic coefficient continuously reducing to less than 15 m-12.(2)The response of bankfull discharge to the channel and upstream boundary conditions varied at scales of section and reach,and consequently the determination coefficients differed for the comprehensive equations,with a smallest value at the Jiahetan station and a highest value(0.91)at reach scale.Generally,the verified results calculated using the comprehensive equations agreed well with the corresponding measured values in 2014-2015.(3)The effect of channel boundary condition was more prominent than that of upstream boundary condition on the adjustment of bankfull discharge at the Jiahetan station and the braided reach,which was proved by a larger improvement in determination coefficients for the comprehensive equations and a better performance of geomorphic coefficient on the increase of bankfull discharge.展开更多
The implementation of the water sediment regulation scheme(WSRS)is a typical example of artificially controlling land-source input.During WSRS,the water discharge of the Yellow River will increase significantly,and so...The implementation of the water sediment regulation scheme(WSRS)is a typical example of artificially controlling land-source input.During WSRS,the water discharge of the Yellow River will increase significantly,and so will the input of terri-genous materials.In this study,we used a natural geochemical tracer 222Rn to quantify terrestrial inputs under the influence of the 2014 WSRS in the Yellow River Estuary.The results indicated that during WSRS the concentration of 222Rn in the estuary increased by about four times than in the period before WSRS.The high-level 222Rn plume disappeared quickly after WSRS,indicating that 222Rn has a very short‘memory effect’in the estuary.Based on the investigation conducted from 2015 to 2016,the concentration of 222Rn tended to be stable in the lower reaches of the Yellow River.During WSRS,the concentrations of 222Rn in the river water in-creased sharply at about 3–5 times greater than in the non-WSRS period.Based on the 222Rn mass balance model,the fluxes of 222Rn caused by submarine groundwater discharge(SGD)were estimated to be(3.5±1.7)×10^(3),(11±3.9)×10^(3),and(5.2±1.9)×10^(3)dpm m^(-2)d^(-1)in the periods before,during,and after WSRS,respectively.This finding indicated that SGD was the major source of 222Rn in the Yellow River Estuary,which can be significantly increased during WSRS.Furthermore,the SGD-associated nutrient fluxes were estimated to be 9.8×10^(3),2.5×102,and 1.1×10^(4)μmolm^(-2)d^(-1)for dissolved inorganic nitrogen,phosphorus,and silicon,respectively,during WSRS or about 2–40 times greater than during the non-WSRS period.展开更多
Water discharge data of the Yellow River over the past 60 years was analyzed using the continuous wavelet transform (CWT) and Mann-Kendall (MK) test methods to identify spatial and temporal variation patterns. Pot...Water discharge data of the Yellow River over the past 60 years was analyzed using the continuous wavelet transform (CWT) and Mann-Kendall (MK) test methods to identify spatial and temporal variation patterns. Potential connections between water discharge in the Yellow River Basin and El Nifio/Southern Oscillation (ENSO) were also examined by the cross wavelet and wavelet coherence methods. CWT results show that the periodic oscillations in water discharges had occurred at the temporal scales of 1-, 2- to 4-, 6- to 8- and 10- to 22-year. It was also found that at the annual timescale (1-year) the phase relations between water discharge and ENSO were indistinct probably due to the strong influence by human disturbances. However, over the longer time scales, the phase relation becomes much clearer with an anti-phase relation being found mainly at inter-annual scale (2- to 8-year) and in-phase relation at decadal scale (16- to 22-year). According to the MK test results water discharge at most stations except Tangnaihai have decreased significantly and the abrupt change occurred in the mid-1980s or the early 1990s. The changes in water discharge were found to be influenced by both climate changes and human activities. Before 1970 the change in water discharge was positively related to precipitation variations in the river basin, but after 1970 the decrease in water discharge has been largely caused by various human activities including constructions of reservoirs, water abstraction and water-soil conservation with water abstraction being the main cause.展开更多
Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and the...Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), inter-annual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sediment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976.展开更多
Based on the clarifications of the deterioration characteristics of the lower Yellow River (LYR), the influence of river deterioration on flood discharging capacity is studied through theoretical derivation and analys...Based on the clarifications of the deterioration characteristics of the lower Yellow River (LYR), the influence of river deterioration on flood discharging capacity is studied through theoretical derivation and analysis of field data. This study indicates that response of flood discharging capacity to river deterioration is nonlinear. Sediment depositions in the main channel cause the reductions of dominant discharge and thus the increase of initial flood stage. Reductions in the channel width result in the increases of the rising rate of flood stage and the decrease of flood discharging capacity.展开更多
A kind of special sedimentary structures are developed in the overwater plains of the Yellow River delta. They look like funnels: round or nearly round, concave of pit-like, with a diameter ranging from several centim...A kind of special sedimentary structures are developed in the overwater plains of the Yellow River delta. They look like funnels: round or nearly round, concave of pit-like, with a diameter ranging from several centimeters to 20 or 30 cm, and depth from several millimeters to over 20 cm. There is a vertical pipe (called gas discharging conduit) in the center, with a diameter of several millimeters to 1 cm, depth of several centimeters to more than 10 cm. There may be a lip-like relief (called 'lip-like relief') on the periphery or some parts of the periphery, with ring structures showing horizontal stratification on the inner margin. Plant debris carbonized, plant fragments or dark-colored minerals may sometimes be found in the center of the pits. Such structures are usually developed in silt (with minor clay laminations), often underlain by one or more thin layers of mud matter. Our studies find that they are genetically related with gas discharging of organic matter during biological degradation.展开更多
The paper analyses the space time characteristics, primary causes and disastrous effects of the drying up of the Yellow River, and proposes the concept of "water resource bearing capacity (WRBC)", which refe...The paper analyses the space time characteristics, primary causes and disastrous effects of the drying up of the Yellow River, and proposes the concept of "water resource bearing capacity (WRBC)", which refers to the maximum bearing capacity of a river in meeting human demands for water on the precondition of sound recycling of the ecosystem. The concept encourages cautious human actions to save and conserve water resources.展开更多
基金supported by the 2021 Research and Practice Project of Higher Education Teaching Reform in Henan Province(Grant No.2021SJGLX072Y).
文摘Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.
基金supported by the Major Science And Technology Program of Inner Mongolia(Grant No.2021ZD0007)National Natural Science Foundation of China(Grant Nos.52209134 and 52322810)+1 种基金Natural Science Foundation of Hubei Province for Distinguished Young Scholars(No.2023AFA080)Youth Science Foundation of Jiangsu Province of China(Grant No.BK20220230).
文摘The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.
基金funded by the National 973 Project China (2013CB733302)National Natural Science Foundation of China (41504014, 41474019)
文摘As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.
基金jointly funded by The National Natural Science Fund Project(41602356)Open Projects of Key REBC Laboratories supported by the Ministry of Land and Resources(Number:CCA2016.08)+1 种基金Shandong Provincial Geological Prospecting Fund Project(Prospecting number in Shandong Province:2013(55)2016(07))
文摘Dongying City, which is the most important central city in the Yellow River Delta, is located in the estuary of the Yellow River. With a short land formation time, ecological environment is very weak in this area. To realize the sustainable economic development of the Yellow River Delta, resource environment and resource environmental bearing capacity(REBC) must be improved. This study builds assessment system of regional REBC through resource and economic characteristics in Yellow River Delta and uses principal component analysis(PCA) method to evaluate REBC of five counties and districts in Dongying City in 2011-2015 on the dimensions of time and space. Results show that, on the time dimension, Guangrao County is ranked first, Dongying district second for four years and Hekou and Kenli districts with lower ranks in 2012-2015, indicating that more attention needs to be paid to REBC of Hekou and Dongying districts and these two districts should be included into key monitoring areas. From space scale, REBC in five counties and districts has been gradually improving. In order to further develop REBC in Dongying City, measures such as intensifying protection of urban ecological environment and developing circular economy, etc. should be implemented.
文摘The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world’s 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea
基金Special Expenses Program of Scientific Research in Marine Commonweal Industry, No.200805063Scien-tific Research Program of State Key Laboratory of Estuarine and Coastal Research, No.2008KYYW06Open-end Foundation of State Oceanic Administration Key Laboratory of Marine Sedimentology & Envi-ronmental Geology, No.MASEG200608
文摘In order to find out the variation process of water-sediment and its effect on the Yellow River Delta, the water discharge and sediment load at Lijin from 1950 to 2007 and the decrease of water discharge and sediment load in the Yellow River Basin caused by human disturbances were analyzed by means of statistics. It was shown that the water discharge and sediment load into the sea were decreasing from 1950 to 2007 with serious fluctuation. The human activities were the main cause for decrease of water discharge and sediment load into the sea. From 1950 to 2005, the average annual reduction of water discharge and sediment load by means of water-soil conservation practices were 2.02×10^9 m^3 and 3.41×10^8 t respectively, and the average annual volume by water abstraction for industry and agriculture were 2.52×10^10 m^3 and 2.42×10^8 t respectively. The average sediment trapped by Sanmenxia Reservoir was 1.45×10^8 t from 1960 to 2007, and the average sediment retention of Xiaolangdi Reservoir was 2.398×10^8t from 1997 to 2007. Compared to the data records at Huanyuankou, the water discharge and sediment load into the sea decreased with siltation in the lower reaches and increased with scouring in the lower reaches. The coastline near river mouth extended and the delta area increased when the ratio of accumulative sediment load and accumulative water discharge into the sea (SSCT) is 25.4-26.0 kg/m^3 in different time periods. However, the sharp decrease of water discharge and sediment load into the sea in recent years, especially the Yellow River into the sea at Qing 8, the entire Yellow River Delta has turned into erosion from siltation, and the time for a reversal of the state was about 1997.
基金Supported by the National Basic Research Program of China(973 Program)(No.2010CB951202)the National Natural Science Foundation of China(Nos.41376055,41030856)
文摘Influences of large-scale climatic phenomena, such as the E1Nifio/La Nifia-Southem Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), on the temporal variations of the annual water discharge at the Lijin station in the Huanghe (Yellow) River and at the Datong station in the Changjiang (Yangtze) River were examined. Using the empirical mode decomposition-maximum entropy spectral analysis (EMD- MESA) method, the 2- to 3-year, 8- to 14-year, and 23-year cyclical variations of the annual water discharge at the two stations were discovered. Based on the analysis results, the hydrological time series on the inter- annual to interdecadal scales were constructed. The results indicate that from 1950 to 2011, a significant downward trend occurred in the natural annual water discharge in Huanghe River. However, the changes in water discharge in Changjiang River basin exhibited a slightly upward trend. It indicated that the changes in the river discharge in the Huanghe basin were driven primarily by precipitation. Other factors, such as the precipitation over the Changjiang River tributaries, ice melt and evaporation contributed much more to the increase in the Changjiang River basin. Especially, the impacts of the inter-annual and inter-decadal climate oscillations such as ENSO and PDO could change the long-term patterns of precipitation over the basins of the two major rivers. Generally, low amounts of basin-wide precipitation on interannual to interdecadal scales over the two rivers corresponded to most of the warm ENSO events and the warm phases of the PDO, and vice versa. The positive phases of the PDO and ENSO could lead to reduced precipitation and consequently affect the long-term scale water discharges at the two rivers.
基金Supported by Gansu Province 2023 Education Science and Technology Innovation Project(2023B-431).
文摘As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.
基金Supported by National Natural Science Foundation of China(40871119)Key Science and Technology Program of Shaanxi Province,China(2007K01-15-1)~~
文摘[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources.
基金This research was supported by National Key Technology Research and Development Program (2012BAC04B03) during the Twelfth Five-Year Plan Period and National Natural Science Foundation of China (Grant No. 41771542).
文摘Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland.
基金Under the auspices of Key Program of Chinese Academy of Sciences(No.KJZD-EW-TZ-G10)National Key Research and Development Program of China(No.2016YFA0602704)Breeding Project of Institute of Geographic Sciences and Natural Resources Research,CAS(No.TSYJS04)
文摘River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.
基金The Technological Innovative Plan of Ministry of Water Resources, China, No.XDS2004-03
文摘River's healthy life is a description of their living conditions, and it is also a comprehensive assessment of river's functions and relations with the human society. Through analyzing the demands of human being and river ecosystem, the continuous flow, safe river channel for water and sediment transportation, good water quality, sustainable river ecosystem and water supply capacity are regarded as symbols of the healthy Yellow River. Minimum flow, maximum flood discharging capacity, bank-full discharge, transverse slope of floodplain, water quality degree, wetlands area, aquatic ecosystem, and water supply capacity, altogether eight quantitative indicators are set as symbols of healthy Yellow River, and their corresponding standards are determined based on the analysis with historical hydrological data and observed data of 1956-2004.
文摘The Tumen River had failed to meet Grade Ⅲ and Ⅳ levels in the environmental quality standard for surface water, and had exceeded Grade Ⅴ level. Surface water pollution is serious. The major excessive standard pollutants were COD Mn and SS. After taking effective treatment steps, the worsening trend of water pollution will be basically under control. But the change of runoff in the Tumen River is large in a year, especially during as long as five month freezing period, smaller flow and lower temperature of river waters led to weak dilution and self purification capacity. The water quality of the Tumen River will not reach the appoint functional water quality standards, even if sewage meets discharge standard, which will influence water resources utilization in the lower reaches of the Tumen River and regional economic development. Therefore water pollution has become the major restrictive factor of the development of the Tumen River area.
基金National Natural Science Foundation of China,No.51725902,No.51579186。
文摘It is of necessity to investigate the adjustment of flood discharge capacity in the Lower Yellow River(LYR)because of its profound importance in sediment transport and flood control decision-making,and additionally its magnitude is influenced by the channel and upstream boundary conditions,which have significantly varied with the ongoing implementation of soil and water conservation measures in the Loess Plateau and the operation of the Xiaolangdi Reservoir.The braided reach between two hydrometric stations of Huayuankou and Gaocun in the LYR was selected as the study area.Different parameters in the study reach during the period 1986-2015 were calculated,covering bankfull discharge(the indicator of flood discharge capacity),the pre-flood geomorphic coefficient(the indicator of channel boundary condition),and the previous five-year average fluvial erosion intensity during flood seasons(the indicator of incoming flow and sediment regime).Functional linkages at scales of section and reach were then developed respectively to quantitatively demonstrate the integrated effects of channel and upstream boundary conditions on the flood discharge capacity.Results show that:(1)the reach-scale bankfull discharge in the pre-dam stage(1986-1999)decreased rapidly by 50%,accompanied with severe channel aggradation and main-channel shrinkage.It recovered gradually as the geometry of main channel became narrower and deeper in the post-dam stage,with the geomorphic coefficient continuously reducing to less than 15 m-12.(2)The response of bankfull discharge to the channel and upstream boundary conditions varied at scales of section and reach,and consequently the determination coefficients differed for the comprehensive equations,with a smallest value at the Jiahetan station and a highest value(0.91)at reach scale.Generally,the verified results calculated using the comprehensive equations agreed well with the corresponding measured values in 2014-2015.(3)The effect of channel boundary condition was more prominent than that of upstream boundary condition on the adjustment of bankfull discharge at the Jiahetan station and the braided reach,which was proved by a larger improvement in determination coefficients for the comprehensive equations and a better performance of geomorphic coefficient on the increase of bankfull discharge.
基金funded by the National Natural Science Foundation of China(Nos.42130410,41876075,and 41576075).
文摘The implementation of the water sediment regulation scheme(WSRS)is a typical example of artificially controlling land-source input.During WSRS,the water discharge of the Yellow River will increase significantly,and so will the input of terri-genous materials.In this study,we used a natural geochemical tracer 222Rn to quantify terrestrial inputs under the influence of the 2014 WSRS in the Yellow River Estuary.The results indicated that during WSRS the concentration of 222Rn in the estuary increased by about four times than in the period before WSRS.The high-level 222Rn plume disappeared quickly after WSRS,indicating that 222Rn has a very short‘memory effect’in the estuary.Based on the investigation conducted from 2015 to 2016,the concentration of 222Rn tended to be stable in the lower reaches of the Yellow River.During WSRS,the concentrations of 222Rn in the river water in-creased sharply at about 3–5 times greater than in the non-WSRS period.Based on the 222Rn mass balance model,the fluxes of 222Rn caused by submarine groundwater discharge(SGD)were estimated to be(3.5±1.7)×10^(3),(11±3.9)×10^(3),and(5.2±1.9)×10^(3)dpm m^(-2)d^(-1)in the periods before,during,and after WSRS,respectively.This finding indicated that SGD was the major source of 222Rn in the Yellow River Estuary,which can be significantly increased during WSRS.Furthermore,the SGD-associated nutrient fluxes were estimated to be 9.8×10^(3),2.5×102,and 1.1×10^(4)μmolm^(-2)d^(-1)for dissolved inorganic nitrogen,phosphorus,and silicon,respectively,during WSRS or about 2–40 times greater than during the non-WSRS period.
基金Major National Scientific Research Programs, No.2010CB951202Special Expenses Program of Scientific Research in Marine Commonweal Industry, No.200805063
文摘Water discharge data of the Yellow River over the past 60 years was analyzed using the continuous wavelet transform (CWT) and Mann-Kendall (MK) test methods to identify spatial and temporal variation patterns. Potential connections between water discharge in the Yellow River Basin and El Nifio/Southern Oscillation (ENSO) were also examined by the cross wavelet and wavelet coherence methods. CWT results show that the periodic oscillations in water discharges had occurred at the temporal scales of 1-, 2- to 4-, 6- to 8- and 10- to 22-year. It was also found that at the annual timescale (1-year) the phase relations between water discharge and ENSO were indistinct probably due to the strong influence by human disturbances. However, over the longer time scales, the phase relation becomes much clearer with an anti-phase relation being found mainly at inter-annual scale (2- to 8-year) and in-phase relation at decadal scale (16- to 22-year). According to the MK test results water discharge at most stations except Tangnaihai have decreased significantly and the abrupt change occurred in the mid-1980s or the early 1990s. The changes in water discharge were found to be influenced by both climate changes and human activities. Before 1970 the change in water discharge was positively related to precipitation variations in the river basin, but after 1970 the decrease in water discharge has been largely caused by various human activities including constructions of reservoirs, water abstraction and water-soil conservation with water abstraction being the main cause.
基金Major National Scientific Research Programs, No.2010CB951202Special Expenses Program of Scientific Research in Marine Commonweal Industry, No.200805063
文摘Based on hydrological data observed at Lijin gauging station from 1950 to 2008, the temporal changes of water discharge and sediment load of the Yellow River into the sea were analyzed by the wavelet analysis, and their impacts on the estuary were investigated in different periods based on the measured coastline and bathymetry data. The results show that: (1) there were three significant periodicities, i.e. annual (0.5-1.0-year), inter-annual (3.0-6.5-year) and decadal (10.1-14.2-year), in the variations of water discharge and sediment load into the sea, which might be related to the periodic variations of El Nino and Southern Oscillation at long-term timescales. Variations of water discharge and sediment load were varying in various timescales, and their periodic variations were not significant during the 1970s-2000s due to strong human disturbances. (2) The long-term variation of water discharge and sediment load into the sea has shown a stepwise decrease since the 1950s due to the combined influences of human activities and precipitation decrease in the Yellow River Basin, and the human activities were the main cause for the decrease of water discharge and sediment load. (3) The water discharge and sediment load into the sea greatly influenced the evolution of the Yellow River Estuary, especially the stretch rate of coastline and the deposition rate of the sub-aqueous topography off the estuary which deposited since 1976.
基金the State Basic Research Development Program (Grant No.G1999043604) the National Natural Science Foundation of China (Grant No. 50239040).
文摘Based on the clarifications of the deterioration characteristics of the lower Yellow River (LYR), the influence of river deterioration on flood discharging capacity is studied through theoretical derivation and analysis of field data. This study indicates that response of flood discharging capacity to river deterioration is nonlinear. Sediment depositions in the main channel cause the reductions of dominant discharge and thus the increase of initial flood stage. Reductions in the channel width result in the increases of the rising rate of flood stage and the decrease of flood discharging capacity.
文摘A kind of special sedimentary structures are developed in the overwater plains of the Yellow River delta. They look like funnels: round or nearly round, concave of pit-like, with a diameter ranging from several centimeters to 20 or 30 cm, and depth from several millimeters to over 20 cm. There is a vertical pipe (called gas discharging conduit) in the center, with a diameter of several millimeters to 1 cm, depth of several centimeters to more than 10 cm. There may be a lip-like relief (called 'lip-like relief') on the periphery or some parts of the periphery, with ring structures showing horizontal stratification on the inner margin. Plant debris carbonized, plant fragments or dark-colored minerals may sometimes be found in the center of the pits. Such structures are usually developed in silt (with minor clay laminations), often underlain by one or more thin layers of mud matter. Our studies find that they are genetically related with gas discharging of organic matter during biological degradation.
文摘The paper analyses the space time characteristics, primary causes and disastrous effects of the drying up of the Yellow River, and proposes the concept of "water resource bearing capacity (WRBC)", which refers to the maximum bearing capacity of a river in meeting human demands for water on the precondition of sound recycling of the ecosystem. The concept encourages cautious human actions to save and conserve water resources.