According to the experimental data of the orifice discharge coefficient for the flow through a vertical sharp-edged orifice obtained in the previous study of this work,a theoretical criterion for flow mechanisms of sm...According to the experimental data of the orifice discharge coefficient for the flow through a vertical sharp-edged orifice obtained in the previous study of this work,a theoretical criterion for flow mechanisms of small orifice(viz.thick-walled orifice and nozzle) and large orifice(viz.thin-walled orifice) was proposed based on the ratio of orifice diameter to plate thickness.It can help explain the dissipation of the mechanical energy loss in the flow process for the two flow mechanisms under different operating regimes.The main parameters such as orifice diameter,plate thickness and liquid head were correlated,and a semi-empirical model for orifice coefficient and an empirical model with high precision at the stable region were developed.展开更多
基金supported by the National Natural Science Foundation of China(20806090)
文摘According to the experimental data of the orifice discharge coefficient for the flow through a vertical sharp-edged orifice obtained in the previous study of this work,a theoretical criterion for flow mechanisms of small orifice(viz.thick-walled orifice and nozzle) and large orifice(viz.thin-walled orifice) was proposed based on the ratio of orifice diameter to plate thickness.It can help explain the dissipation of the mechanical energy loss in the flow process for the two flow mechanisms under different operating regimes.The main parameters such as orifice diameter,plate thickness and liquid head were correlated,and a semi-empirical model for orifice coefficient and an empirical model with high precision at the stable region were developed.